" AD-A124 674 HSSOCIRTIVE DATA ACCESS METHOD (ADAM)(U) AIR FORCE INST 4/3
F TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING
J R HOLTEN DEC 82 RFIT/GCS/EE/82D-19
UNCLASSIFIED F/G 872

=
F=

Z'.':"':-\"-."‘-". _.4\;-‘_"4-: " o - -
Ve B s O N G B A A DR
X e T T T S L L O T O e
1.’:
3
&
P.'
o
v
3
=
o gze B2 TN
|0 Bl
emmmm— 38 .2 ' i i
———— R I2-2 i
w ks .
o R 2.0
. s
——
S —
=
125 W4 Wie
= (I=
i
‘i .
! MICROCOPY RESOLUTION TEST CHART
1 ;_' N_AIIQNAL BUREAU OF STANDARDS-1963-A
1 3
- d\
L’* T L N TN T e
W te Yy “.. _"','-;:1‘_‘!_;:.':-“-. .‘:_~-'_-»".“<."<‘\ .-._' -,—'v_‘-» ~_-:',-. T A
T T R R T SRS DA .« v v -
- LA N E SN \—:LL:A_"L_‘A.““.._-:'_L.‘- .- »-“_i'--v D

TG FILE COPY

..........................
........................

ASSOCIATIVE DATA
ACCESS METHOD

(ADAM)

THES1S

AFIT/GCS/EE/82D-19 James R. Holten III

Nant ngear

DTIC
g *lZ.LECf’:'E
B L0 219837

DEPARTMENT OF THE AIR FORCE
AR UNIVERSITY (ATC)

| E
AIR FORCE INSTITUTE OF TECHNOLOGY - ...

Wright-Patterson Air Force Base, Ohio

-

e e e o m e e e -
This docviie ot v e cpproved ~ ;.
for puh - Yt e) -

AFIT/GCS/EE/82D-19

ASSOCIATIVE DATA
ACCESS METHOD

(ADAM)

THESIS

AFIT/GCS/EE/82D-19 James R. Holten III

Capt USAF ~ ,DT'
ELECTE
FEB 2 2 1gg3
E
Approved for public release; distribution unlimited BRI

i g “ma i e e *od SR R S e s B bl A I e S S A T et S R

" R e VL N R o W Lo e T e e, P e R TS, AU RN
F.:'\.':..:\X\Y*..;vn».3,.:.,--..-_-..-._0.- S A

~

AFIT/GCS/EE/82D-19

(ADAM)

THESIS

Presented to the Faculty of the School of
of the Air Force Institute of Techn

Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science

by

James R. Holten III, B.S. Mathemat
B.S. Computer Science

Capt
Graduate Computer Science

December 1982

'''''''''''''''''''''''''

ASSOCIATIVE DATA ACCESS METHOD

Engineering

ology

Accession For

NTIS GRA&I g
DTIC TAB
Ur-~ansunced O
Justification]

By

Distribution/
Availability Codes

| Avail and/or
Dist | Special

—eed]

A

ics,

USAF

Approved for Public release; distribution unlimited.

Preface

This work was motivated by the widespread need for
rapid multidimensional access to data. Frequent allusions
by numerous instructors at the Air Force Institute of

Technology and in open literature to associative memories,

their high cost, small size, and non-availability, triggered

my interest.

This software approach to associative data access is
far more flexible than hardware approaches can be, and is
far less expensive to use for specific applications. The
software developed stores data in an efficient, but unique,
manner, and allows rapid multikey access to the data.

It is assumed the reader has a basic knowledge of data
structures and some background in relational databases.
This report presents the basic approach, the computer
program package, and suggestions for further analysis and
research.

Thanks are due to my advisor, Dr. Gary B. Lamont, and
my readers, LtCol James P. Rutledge, Dr. Henry B. Potoczny,
and Dr. Thomas C. Hartrum, for their advice and guidance in
the research and preparation of this report.

I would especially like to thank my wife and children
for their tolerance, patience, and support during the
writing of this thesis.

James R. Holten III

ii

.........

.............

contents

Preface L] L] L] L] L] L] L] L] o L] L] L] L] * o L] [] [] L] L] ii
List of Figures L] L L] L] L) L] L] L] L] L] * L] * L] L] .vii
Li st of Tables L] [] L] L] * L] L] L] * L] L] L] L] L] L] . * ix
Abstract [] L] L] L] L] L] L 3 L) - - * * L] * L] L] L] [] - * x
I. Introduction. . . ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢« o« o« « « 1
Background ¢« + ¢ o o o o s o o s o 1
Associative Access . . . ¢« ¢« ¢« ¢ + . . 1

Past Methods . . . e s o o s o 3

The Secondary Key Problem. e« ¢ o o o o 3

Sumary. L] * L] [] L] L] L] L] . L] L] L] L] L] L] 6

The PrOblem- L] * L] L] L] L] L] L] L] L] * L] L] * L] 6
Sccpe [] . L] L] L] L] L] L] L[] L] L] L] * L] L] * * L] * 8
Approach . . ¢ &¢ o ¢ ¢ o o o o o o o o« « « 9

II. Concepts and Requirements. 11

Introduction . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o 11

Bagsic Concepts ¢ ¢ ¢ o o o o & o o 11
Preliminary Definitions. 11
Data Associations. . « « +« ¢ ¢ + ¢ o « 15
Data ACCe8S8. + « ¢« ¢« ¢ o« o o o o o o o 17
Summary of Basic Concepts. « . 19

Mappings . . ¢« o ¢ o« 4 o o o o s e o o o o 19
Introduction . « ¢« ¢« ¢« ¢« ¢ ¢ ¢« o &« « o 19
Mapping Algorithms . . . « « « ¢« « « . 19
Data Element Structures. . . e o o 22
Comparison: Compound Versus COmple

Data Structures. . . « « « « . . . 24

Associative Organization of Data 26
Introduction . . . ¢ ¢« ¢ ¢ ¢« o o o« « o« 26
Data Associations. « ¢« ¢« + ¢ ¢+ ¢ . o 26
Multidimensional Data Associations . . 29
Data Set Forms . ., . e o ¢ o o o« o o 31
Associative Data Models. e o o o o o » 33

Associative Access topData 34
Introduction e o« o+ o 34
One-dimensional Associatxve Access « « 35
Multidimensional Associative Access. . 36

Associative Data Access Method (ADAM). . . 39
Introduction . . . ¢ ¢« ¢ & & o « o« « « 39

iii

........

. .
- 4t -

Associative Algorithm Set.
Associative Map.
ADAM Summary . . « « o o o
Quality Assurance Requirements

Summary. L3 [} [] [[[. .‘ L] L] [

III. DeSign [}] [[[] L] [] . L] L] []

Introduction . . ¢« ¢« ¢ ¢ ¢ o o

Design Evolution and Tradeoffs
Introduction
Full Space Representation.
Hierarchical Access. . . .

Multidimensional Binary Tre

Missing Data
Retrieval Regions. . . .
Map Storage.
Retrieval Forms. . . .

Summary of Tradeoff Results

ADAM . . . ¢ ¢ o o o o o o
Introduction
Model Interpretation .
The Structure.
The Manipulation Algorithms
Summary of ADAM.

The ADAM Program Package . .
Introduction
Data Flow Diagrams . . .
Program Control Structure
Data Structure Diagrams,
Overview . . . « « « « &

Sumary o '] '] L] . L) L] [] L] L] L L]
Implementation &
Introduction . . . « + ¢ ¢ o o

Implementation Particulars
Introduction
Environment., . .
Considerations .
Restrictions . .

Program Organization

Introduction . . . ¢ « o« &
The ADAM Routine Package .

[
*
*
L]
e
*
L]
[
L]
°

L4 L] L] ® L]

The Interactive User Interface

Package. . . . « ¢ o &

iv

..................

.....
DO W Y

V.

The

Program Modules.

Debugger User Interface Package.
Summary of Program Organization.

Use of ADAM. . . ¢ « & ¢ + o o
Introduction . . . e
Interactive Use of ADAMTEST. -
Applications Use of the ADAM
Routines . . « ¢« ¢« o « o o &«

Introduction
Module Interaction . .
Module Structure . . .

i

L L * L] L[]
* L] . L L)
L L] L] L] L]

Module Code Characteristics

Summa ry L L] L] L] L] L] - L] L L . . * L] L]

Analysis. L] L] L] L] L L] - L L4 . ® L] L] L]

Introduction . . « ¢ ¢ ¢ o o o o o @

Space Requirements . . . « « « « . .

Linear Data Sets
Multidimensional Linear Ordered

Data Sets. . ¢« « « ¢« ¢ ¢ o «
M-way Tree Forms:

Fixed Node Sizes
M-way Tree Forms:

variable Node Sizes.
Summary of Storage Requirements.

and DELETE Time Requirements . .
Introduction . . ¢« ¢« ¢ ¢ « « o &
Linear Unordered Data Set. . . .
Multidimensional Linear

Ordered Data Sets.
M-way Tree Forms:

Fixed Node Sizes
M-way Tree Forms:

variable Node Sizes. . . .
Summary of ADD and DELETE Times.

FIND and RETRIEVE Time Requirements.

Introduction . . . ¢ ¢« ¢ ¢« ¢ o &
Linear Unordered Data Sets . . .
Linear Ordered Data Sets
Multidimensional Linear

Ordered Data Set« .«
M-way Tree Forms:

Fixed Node Sizes
M-way Tree Forms:

variable Node Sizes.

Summary of FIND and RETRIEVE Times

L e e e . [R L - oL e e
PPN P I | LA S S . IR TR .. PO WD NPT S PL.)

L] L L] L L]
O
o

.100
.103

.104
.104
.104
.106
.107

.108
112

.114
114
.115
115
.116
.118

.120
.123

P T PN

ADAM Performance Optimization.
SPaCe. . « ¢« ¢ o ¢ o o o »
ADD Time
DELETE Time. . . .
FIND and RETRIEVE.
Overall,

Run Time Performance Analysis. . .
Analysis Summary . . . « ¢ ¢« ¢ o o
VI. Results. . . . ¢« ¢« ¢ o o ¢« o o o &
Introduction « ¢« ¢ ¢ ¢ . &
Data Model Characteristics
Codes Characteristics.
Theoretical Performance.
Functional Tests . . +« « « « « « &
SUMMALY. « « o o o o o o o o o o &
VII. Conclusions and Recommendations. .
Conclusions. . « « ¢« o « o o o o @
Recommendations. . . . « « « « . &

Bibliography . . « ¢« ¢ ¢ ¢ ¢ « & &

.125
.126
.126
.126
.126
.128

. .128
. 129
. +131
. o131
. .131
. 132
. 4133
. 134
. 134
. 136
. 136
. 137
. 140

Appendix A: Multidimensional Data Structures .143

Appendix B: Data Flow Diagrams1l51
Appendix C: Data Structure Diagrams.172
Appendix D: Source Listings.181
Appendix E: TesSt RUNS. . « « ¢ o« o o o o o o +237
Vi ta. L] * * L] L] L] L] L] L] * L] » L] L] L L] L] L] L] L] L] 2 5 7
vi
T PRt R R T R S LN, L Rt T s T Gt T s

e List of Figures
Figure
1 Hierarchy of Data Elements,

Levels of Observation . . . « ¢ ¢ « o &

2Dimensions. ¢ ¢ ¢ o o o o o o

8 Associative Access Via The ADAM Map . .
‘n! 9 ADAM Ordered Sequential Set Retrieval .
10 ADAM Parasitic Retrieval Map.
11 ADAM Flagged Node Retrieval Map
12 ADAM Unit "Box" Regions
13 ADAM Region Halving by Levels
14 Bit String Vectore for Regions.
15 ADAM Node Structure . .« ¢« ¢« « o ¢ o o o
16 ADAM Map Hierarchical Structure
17 DFD of ADAM Algorithm Set
18 ADAMTEST Hierarchy of Control

19 AMAPTRAV State Diagram.

2 Hierarchy of Algorithm Sets « . . .
3 Data Elements and Algorithm Sets.
4 Parallel Complex Data and Algorithm Structures.
5 Parallel Compound Data and Algorithm

Structures. . .« . ¢ o ¢ ¢ ¢ o o ¢ o o e o o o
6 Two Views of Hierarchical Data Elements
7 Node Region Versus Search Regions,

20 Quad Tree Node. . . « ¢ ¢ o ¢ ¢ o o o o o o o

21 K~D Tree Levels e & ® e ® ® ® e o e & e ® e ° @

1.'. 22 CARTAM structure Levels e e o o o & o o o o+ s .
vii

Page

12
13
15
24

25
32

37
54
54
55
57
60
62
64
66
67
70
76
92
147
Las |
149

23 DFD of ADAM Algorithm Set « « « ¢« « « . 153
24 DFD Of ACREATE. . « « ¢ « « o o o 2 o o « o o o« 154
25 DFD Of NEWBUFF. . « ¢ o « ¢ o o o o« o ¢« o « o« » 155
26 DFD Of AADD . ¢ ¢ « ¢ o « o o o o s o o o o« o« « 156
27 DFD Of CRTLSK . « ¢« o o ¢ o ¢ o o o o s o o o« o 157
28 DFD Of BITPU:. « « ¢ « = o o o s o o« o o o o « « 158
29 DFD Of MAPSRCH. . « « ¢ ¢ o o s o o o o « o« « o 159
30 DFD Of BUILDB .« « « ¢ « o o o s o » o o o« « « « 160
31 DFD Of RETCELL. . . ¢ o o « o o« o o« o s o« o o o« 161
32 DFD Of NODEINS. . « o ¢ « o o o o o o o o o« o« o« 162
33 DFD Of AFIND. « ¢« « ¢ o ¢ « o o o o o ¢ o o« o« « 163
34 DFD Of AREGCOMP . . ¢ « « « ¢ o o o o o o « « « 164
35 DFD Of AMAPTRAV . . « o o « o o o s« s o« o« o o « 165
36 DFD Of AMOVE. . . « « « = o o » s o = s « o« o o« 166
37 DFD Of ARSET. « ©+ ¢ ¢ o o o o o o o o o o o« o » 167
38 DFD Of ADELETE. . o« « « o o o o o« o o« o « « o« » 168

39 DFD Of ARSELECT . ® & & e s ® e e e © o o e o+ o 169

40 DFD of RmNODEo - - L] L] L] L] L] - L] L] L] . L] . L] L] 170
41 DFD Of ARETRIEVE. . ¢ ¢ ¢ o ¢ o o s o o« o o« « o 171
42 ADAM Map Data Structure . . « « « « « ¢ « « « « 175

43 ADAM Map Buffer Data Structure. « « « « 176

DK @ L (e w T ivnt o

44 Sequential Retrieval Data Structure 177

[y v N0

45 Region Definition Data Structure. 178
46 Level Search Key Data Structure . . . « « « « . 179
47 Map Position Stack Data Structure 179

48 Trace Stack Data Structure. . « . « « « « » « o 180

PR N |

....................... Y - - . - L] .. - -~ - - 0 . N .
L] AT T R S . - . * - ~ - » » g - . - - - - - . - . . . b .
A A ISR TR I A I, IR WA IO | S - —

List of Tables
Table Page
I Examples of Data TYPES. . « « « s o« o o o o o » 14
II Data Forms And Applicable Mappings. 21
III Space RequirementsS. « « « o ¢ « « « o o o o« o« o 103
Iv ADD and DELETE Time Requirements. 113

v FIND and RETRIEVE Time Requirements 124

Vi Performance Ranking of Techniques 125

ix

T T LT e et Lt AT . - . S NS . S
. ol - o -~ . . - . . - LI P T R) . . - .~ ~ . - - - - . - . - . ~
P I R N S R P S, AL DU P PRt TN PR WU SIRCIPE JORT YOet IR WO TP It DRSPSt PR LIRS By . SRt

ATt e e e e e e e e e e e

o

[

Abstract

//

‘ A software solution to the multikey access problem is
presented. The result, ADAM, models associative memory
techniques to obtain fast retrieval times and efficient data
storage. A multidimensional tree structure is used. Each
data item key is one dimension, and at each lower level in
the tree each dimension is divided into successively smaller
half-intervals. Unlike m~-way trees with fixed sized nodes
and K-D tree levels, each ADAM map level is a linear linked
list. Each node of the ADAM level linear linked list is the
root of a subtree, or is the terminal node of a data item in
the data set. The resulting data structure is, in many

‘[’ cases, more storage efficient than normal linear storage of

‘ the data items. This is dQue to the suppression of duplicate
high order bits among the data items. The method allows
retrieval of associative data subsets from the associative

(3 data set much faster than other multikey access techniques.

Analysis of variations on ADAM are suggested, especially for

1 AT

il o e}

application to very large (over 100000 data items per data

1

set) multiuser databases.

- . ..~ . LI . . - . .
. R . W s B S . - . - . - - - > -
AP W WP PO WS W WP GO W S Py V. WL IV TP POOU SRRE S WA U A S WP S et i, VI G . - .

b B g a0 en shme) 204 M
T

I Introduction

Background

Associative access is often brandished as a panacea for
many database retrieval problems. Many people have
attempted to implement a good, general purpose method, both
in hardware and software (Ref 6;30). All previous attempts
have fallen short, each being used for its own application,
but none being generally accepted and widely used. This
paper discusses software techniques for associative access
to data, and derives a new technique.

Noting that no technique is good for all applications,
this thesis investigates the performance parameters of
several software techniques. The techniques are compared,
and selection criteria for matching techniques to
applications are suggested. The new software technique is
proposed to fill the gaps in performance left by the others.

Associative Access. Associative access is a vague term

often replaced by the term "content addressable" (Ref 13;
17; 27; 33). "Content addressable" means accessing data by
its value rather than by its location in a data structure.
The idea comes from the outward appearance of the human
memory retrievals (Ref 35). The human mind seems to
agssociate concepts and thoughts based on their content (Ref
34; 35). A simple event conjures up multitudes of diverse
associations in different people's minds. If someone

mentions how hot it is, someone else may immediately picture

b L P UL T L U DR W W WU SR WU I ST S Y H - N Py . A a P P N S N S SR

e Y
i T v e
3 I PPN

PR B T e S

B " SN

the time they had in the heat at the beach in Florida or on
the desert in Arizona. The only relationship between the
triggering statement and the resulting thoughts conjured up
in people's minds is a concept, or perhaps a single word.
Many concept and word associations occur in every mind for
most sensory inputs.

Associative data organization in computers is usually a
model of this behavior in any way that will give similar
outputs for the same inputs (Ref 13; 17; 20; 27; 30).
Associative retrieval of information is the driving force
behind many data base management systems. An extension to
the human memory was needed to hold large quantities of data
and give rapid data retrieval (Ref 9). However, lacking the
ability to implement a fully content addressable memory on a
large enough scale (Ref 30; 33), many approaches have been
tried to create a workable substitute. These substitutes
include database management systems (Ref 8; 21), associative
brain models (Ref 20), and hardware content-scanning
associative processors (Ref 27; 30).

Khen achieved, rapid associative data access can be
useful in areas such as pattern recognition, graphic scene
analysis (Ref 13), and artificial intelligence (Ref 33).
Within these subject areas, associative access can be
applied to automated speech recognition, weather prediction,
"smart"” missile guidance, automated spelling correction,
medical diagnosis, aircraft simulator scene generation, and

radar target identification. Use in any of these

TP S T U

applications, however, requires many retrievals from large
data bases, and most of the applications have "tight"
retrieval time constraints. Five minutes to analyze a
picture can make a data retrieval program unacceptable in
many applications. The difference between fast and slow
retrieval times can be the access technique used, and to
make retrievals fast enough to satisfy the time constraints,
associative access has been hailed as the "only way to go"
(Ref 17).

Past Methods. Both hardware and software

implementations of associative access to data have been
created. Most of these implementations have simulated
content associative access with combinations of serial and
random access techniques. These implementations include
serial searches of entire data structures (Ref 27), parallel
processors ¢r I/0 devices each doing serial searches of
large data structures (Ref 30), or linked tree searches of
medium to small data structures (Ref 3; 13; 20). The
hardware implementations have all been expensive and their
expansion capability and access times have limited their
usefulness (Ref 27; 30). Most software implementations have
been designed to handle specific problems, and their lack of
generality precludes their usefulness in other applications
(Ref 13; 20).

The Secondary Key Problem. A primary key is any

combination of key data fields which can be used to uniquely

identify each data item in a data set. When a single key

PASKSIN

di St "S- St e iahe AU e A A el e e e
e - E 20ttt g g et il i At T Pt B R e e

value does not give a unique data item, then the key is

referred to as a secondary key. A primary key, unique for

each data item, can be used to define an ordering of the
data items and used for a binary search. A secondary key
may not be unique, and thus an ordering only allows one
level of binary search, leaving unordered subsets of the
data. Either a new ordering must be created for further
binary searching, or a linear search must be used to select
the proper elements from among those found satisfying the
first search. Knuth (Ref 16:550-567) refers to it as the
secondary key problem, and Bentley (Ref 6:397) calls it the
"multikey searching problem". The difference is that
"multikey" refers to the successive selection on different
keys.

Knuth (Ref 16:550-567) discusses retrieval on secondary
keys and gives some software solutions. These solutions are
inverted files, compound attributes, binary attributes,
superimposed coding, combinatorial hashing, generalized
tries, and balanced filing schemes. Inverted files are
additional orderings for access via multiple key
combinations, hereafter referred to as multiple key linear
orderings. Compound attributes are orderings which depend
on a set of keys, in a specific order of importance. Binary
attributes are merely two-valued attributes, allowing
combinations of attributes to be represented as a single
string of bits. Superimposed coding is similar to binary

attributes except that each attribute is given a multibit

S tubhatntal e o st N et e R Rt a oA PO R LAY WP UL YUV T W . LI P ‘_‘L‘_AJ

:
FRENTNEN RN

T e T T R, T e S T T

L P R R UL T S A DR e - . ST T . M - e Te e et -

code, and combinations are represented by "or"ing the
multibit codes of all the component attributes together.
Combinatorial hashing consists of hashing all the
attributes, then concatenating the hashed results to a
primary key. Generalized tries (from reTRIEvals) is a
variation on the 'trie' search (ref 16:48l) and uses an
m-way tree search. Balanced filing schemes use each
combination of attributes to form an additional inverted
file. Of all these methods, the 'trie' search is the
closest to the candidate data structures considered for
associative access. The candidate structures are the quad
tree, the K-D tree, and the CARTAM structure. These three
software methods are described in Appendix A, and have been
used in associative applications. The quad tree, K-D trees,
and CARTAM, and will be discussed further.

Bentley and Finkel (Ref 5) presented the quad tree, a
common form of the m-way tree. Since its introduction many
others have used it and expanded on the applications of its
associative properties (Ref 11; 12; 28). The quad tree is a
structure for two dimensional data, and as such its
applications have been restricted to such problems as
graphic scene representation.

Bentley later introduced the EK-D tree (Ref 3) for more
general use. The K-D tree has the advantage of being able
to represent multidimensional data without changing its
basic data structure elements. However, the K-D tree is not

optimal, and the user's algorithms must be able to

....................................

N

W “T s AdN A
- ‘A'..’.'..'.n Ca

nd

"remember® which dimension is being processed at each node
in the structure.

Petersen (Ref 24) created a multidimensional data
structure for solving a "near-neighbor" problem application,
and called it the Cartesian Access Method, or CARTAM. CARTAM
was used in an associative application, but it was not noted
as an associative access method. The CARTAM package was
created for a specialized application which used Cartesian
measures of distance in a multidimensional space, and thus
was limited to real spatial coordinates. CARTAM also
included a substantial amount of data in each node, making
the nodes large and cumbersome.

Summary. Associative access techniques, though sought
after by many, are still elusive. Both hardware and
software implementations fall short of the performance and
flexibility needed to make the techniques generally useable.
A variation on the CARTAM structure and algorithms, however,
showed promise as a generalized associative access method.
All of the candidate approaches have drawbacks, so the

secondary key access problem must be analyzed in more depth.

The Problem

The world consists of large volumes of information
which living creatures process and store in many diverse
ways (Ref 32; 35). To analyze this information and its many
facets, a model must be used. Once the model is proposed
and accepted, the information, hereafter called data, can be

analyzed only to the extent that the model represents the

i} Ol
. . PRI
W L R AT
' & e R

a

T N S

1 9
i

P NN
. »
g

v i

AR kg DR N
R ! AU AR
PP Q'. RN

Tt

..

. 8 ¥
oy
e

real world, and to the extent that the model can be

analyzed. A model must be derived, presented, and analyzed.

Programmers are having to handle projects which involve
extremely large amounts of data. Selection of data items
from a large data set is easy if there is a single key which
is unique for every data item. A binary search may be
performed. Bentley (Ref 6:397) points out, however, that
multikey retrievals currently give less than satisfactory
results. A quicker way to retrieve data using multiple keys
must be found.

Software implementation avoids the high cost of
developing or purchasing specialized hardware (Ref 17; 27;
30), and can allow the generality needed for widespread
acceptance and use of the new associative data structures.

A software implementation also can allow the associative
access technique to be machine portable.

While serial and random access normally return one data
item per retrieval request, associative access is expected
to return a set of data elements for eaclL request.
Implementing this multiple element retrieval reveals new
problems. 1In what form should the returned set be: a serial
table, a random access array, or an associative data
structure? How should serial processes and random access
data structures interface with the associative data
structure? What performance measures should be used to
estimate the "goodness" of different associative data

structure implementations: update and retrieval times,

P A YL WP UL SN SN TP, DRI AP Ul WG UL PP U LY ST GLEE W S Wy

memory space usage, or complexity of structure? These
problems require an analysis of the data relationships and
how the relationships are to be used.

The problem is then to implement a generalized
associative data access method which has the following

~ properties:

-Models real world associations

-Allows efficient secondary key access to large
volumes of data

-Is flexible enough to be implemented on a variety
of large and small computers

~-Sets up conventions for retrieval of sets of data
-Insures quality design and code through good

software engineering techniques.

Also criteria will be listed for choosing which techniques
of those analyzed are more efficient for specific

applications.

Scope

The CARTAM structure seems to be a promising

i
LA

- generalized associative data structure and access method.

But there are significant differences in the interpretations

Yve's ¥ V¥
& D

T

el e

of "associative access" which must be resolved. To make the

ki1

- access method useful, not only must it be implemented and

evaluated, but the potential users must be shown when the
structure can be applied to a problem, how to apply it, and

then how to make the best use of the application.

The object is to educate the user, and to give the user
a new tool for future software development. This paper
presents a possible associative access method, and attempts
to give the user a view of data which will make the approach
easy to apply. The software implementation of an
asgsociative access method gives flexibility far beyond any
obtainable currently in hardware, however, it shares some

logical concepts with the hardware implementations.

Approach

This paper will present several views of artificial
data structures which can be imposed on real world data.
Using these views of data, the paper will show how
associative access methods can be applied to problems, then
an associative data structure and access method will be
presented and analyzed.

Current and past literature is surveyed and the
applicable techniques of analysis are employed. For
analysis purposes, certain notation and terminology has been
borrowed and applied to the new model of data and for the
description of associativity.

Algorithms to implement an associative access method
using the given data structure will be analyzed and compared
to other access algorithms. The results will be tabulated.

The model presented is a hierarchical view of data in
the real world, and not intended to presume that all data
can be represented in a computer. The model presents a

logical structure for representing data, and then presents

P TR T
. . P S R T
. . . .

an alternate view of data in terms of types of associations.
Using both views, the data structures presented are shown to
simulate the real world associations of data.

Using the approach and concepts presented in the model,
a candidate associative data structure and access method is
proposed, implemented, and its performance analyzed. This
proposed data structure is compared to other currently
popular data structures which are used for associative
retrieval tasks. Analysis is presented for theoretical
performance with suggestions for analyzing actual

performance.

10

........

II Concepts and Requirements

Introduction

This chapter develops concepts and terminology
necessary to investigate associativity in data. It then
discusses types of data associations and ways to model the
associations in a computer. The different association
models are developed and their limitations are presented.
Methods for further analysis of their usefulness for solving
real world problems are presented. An associative model is
presented and then ways to access the model are discussed.

Finally specific access method requirements are presented.

Basic Concepts

Preliminary Definitions. The terminology and concepts

to be used are standardized for the references which follow.

& It

= First general terms for referring to data are expressed,

!. then more specific terms for data associations are
presented.

E% The structure of real world data can be presented in a
- hierarchical or recursive structure. All data can be
represented in this fashion as simply as stating the words
ﬁi "all data". This can be decomposed at lower levels by such
» subdivisions as "all data relevant to the problem at hand"

N and "all data not relevant to the problem at hand."

A data set is any collection of data. The components

of the data set are data items. "Data set" and "data item"

11

NiL2

) Single A ! : Y\\\\\‘ High Level
Data Element ! v \ \ Appearance
:) I \ o
l' ! ‘\ \\\ :
4 : - N \ \
Set of Multiple ! AN Low Level
Elements ' ,'\Zr "'::‘\T\ 3 \ Appearance
VS YR
! o 1 H [Y X ‘\ _
: . L -l. - { i ; .|' J‘ \‘ Y
Multiple Sets ‘\\\J\\:}\?\<:---f~m- .\ Lower Level
-{O0f Multiple \\‘ﬁt:b'"”" =3 \Appearance
Elements :
N Fig 1. Hierarchy of Data'Elements, Levels of Observation
;E will be used to refer to arbitrary data, while "data
fﬁ element"” will refer to structured @ata components.
y !!; A data element is a recursively defined unit of data.

It is an arbitrary data set, referenced as a single unit for.

purposes of clarity of understanding of the underlying data

structure and its interrelationships. A fundamental data
element is a data element which cannof be further subdivided
(atomic). A fundamental data element could be a measured |
value, a Booleah flag, a character, or a label representing
another data element. The makeup of data elements can be

. . shown, using Backus Nauf Form (Ref 14:110), as_

'<DE>::= { <CDE> } | <FDE>

<CDB>::= <DE> | <DE> <CDE>

High Level

Single Algorithm r\\\\\k \
LS ~ - -Appearance
4 y X _

Set i Y
])
. 'l 'g \‘ X

! [[} \)
! ! \ \ .
1 i \ \\

1Set of multiple ‘\\\\\\j j\\\\\:: Low Level

Algorithms _ d Appearance
Fig 2. Hierarchy of Algorithm Sets

DE is data element,
CDE is collection of data elements, and

FDE is a fundamental data element.

Data can be thought of as having levels of
Whether a collection of data

organization-as in Figure 1.
is considered a single data element or a collection of data

elements depends completely on the user's level of
observation and abstraction. The data elements at any level
may take on data structures classified as simple, compound,

or complex, corresponding to different data forms found in

the real world and in programming languages as shown in
The classification is affected by not only the

Table I.
data structure, but also the associated algorithm set.

An algorithm set is any collection of algorithms which
Figure 2 shows how

may be accessed as one single unit.
several algorithm sets.may be combined into one higher level

algorithm set, A collection of integer manipulation

13

.......

PP W I G

s oealla s

B e i e

il N SR I NS S

) 39S :
v - ‘paodax 5
*2an301d T T 7 Iteo einpesdoad B
e ut s3oalqo J0 aurjnoaqns ® Uy
41330dwod e ur oTdny o1burs | HButays aszeweaed wyy | _ _
s3aed ayl IV ® Ul seo3Nnqra3zje IV | weaboid e uy pesn soTqeTICA TV xo 7dwo)
*sjusueanseau mcﬂuum_ @
Jo @aduanbes (XTI30UW : I930eIRYd K
axn3ord °A°g ® uotjerax | _‘xojoea) | % _ _ !xyagewm _ B
ur syax1d 11V e ut sotdny TIVY Xe1ay punoduo) -
, “punos .
Jo TeAIx®3uUT- - ¥
swTl ® I0 ‘uorzeIS - :
‘axn3014d v . 91burs ®© 10 ‘a1dny saeTeOS burags :
anTea paanseau ‘o1burs ® ‘uorjzerax uorstoaad Isy30 I930®IRYD
‘anTea ueatooq ‘e 3o a7dny s1buts e _ aIqnop | i 1:0 o) 1 _ _ ‘xyazew B
‘ToqeT ¥ |uTt ®@3nqra3zxe a1burs ¥ ~ 7 T ueeTood “Tesy ‘asbezur =~ a1duts i
— PrIom Teey soseqejed TeuoTieTay | AT NVHLY0d - TYOSYd ° OISvd SivV dH _
: . . - y
saTdurexy IaYy30 sobenbue] ze3ndwod 9di1L ejeq .
| i
. .u‘
sadA] ejeq jo soTdwexy N
I I74VYL g
h“)
<)
el SR e P e T

User Operation
Request

High Level V*QTSEEEN\\\‘ lgorithm Set
Data Elemen

: Lower Lev;T\\\\\[ﬁ\\\i§§& | '
X Data Elements -

h Fig 3. Data Elements and Algorithm Sets

algorithms which can be accessed via a single standard

Iﬁ-'-' Rl

"call” can be considered by a user to be a single algorithm
set. A data base manipulation program can do multiple'

. functions, but is activated by a single call, and therefore
119 can be considered by a user to be a single algorithm set.

Each algorithm set is associated with a specific data

IOOSe -

element structure. Each algorithm implements all the
desired operations on that structure, and isuorganized as in
Figure 3.

"Algorithm sets" will be used in reference to those
algorithms which operate on data elements. “Associativity"

will be used in reference to data sets and data items, but

must be defined first.

Data Associations. An association is any way that data

items or data sets are related to one another. These can
fall into two main categories, metric associations or

non-metric associations.

15

L .. R . UL L AP WP VAT W VI SPUNE WY WU G WY WIDH WP YL GO SN VI G WO N WO WS N 3 AA-AJ

A metric association is an association which can be

mapped into a real number line, and has the property that
differences between data item association values, or the

association distances, are important to the problem being

solved. A non-metric association is an association where
the data association values can be mapped into numbers, but
the resulting distances are irrelevant. The above two
definitions do not cover all possibilities, but the subsets
of computer data are assumed to fit these definitions.
Associations among data items must be representable in
a convenient form to be easily used for further derivation.
To represent associations, the terms "association value" and
"association vector" are defined with a convenient notation.

An association value, V, is the numerical value into

which an association is mapped for representation. An

association description, S, is a representation of what the

association means to the user. A data item, DO' can then be

considered to be associated with another data item D;, and

the associative link can be represented by (Dy, S, V, Dy).

D; is considered associated to D,.

A collection of data items, D for i=1, ..., N can

il
each be associated to Do via the same association

description S. This will be represented by (Do, S, Vi

D;)
where Di associated to Dy via S has the value Vi i=1, ...,
N.

A pair of data items can have many significant

associations, and the number of associations, K, will be

16

assumed to be finite. Then, by assigning an arbitrary order
to the association descriptions, the association description
vector, §=(Sl, 52' cee o SK) will be formed. Also, the
association vector, §=(Vl, V2, cee g VK) can be formed. The
association vector represents the association values of the
K associations of the data item.

If D0 is associated with D, via each of the association
descriptions, Sj' j=1, ..., K, then the full set of
associations can be designated by (Do, g, Gi' Di)' i=l, ...,
N. If all the data items Di' i=1l, ..., N, are associated to
D0 via § then an associative data element can be described

by

-

(v,

1’ Di)' i=1, e oy N

and D0 becomes the reference for the data element, and the
S. are the descriptions for the K associations. Dy and Sj,
j=1, ..., K, become irrelevant to the storage and retrieval
of the data items Di once the association values, vij' are
derived. Accessing the Dy is now a problem of finding the

which are within a search region defined in a K

Vij
dimensional vector space.

Data Access. Commonly known as "content addressing”,

¢ associative access means "access by value". It is the

process achieved by any of the number of search algorithms

as found in Knuth's volume, The Art of Computer Programming,

y vol 3, Sorting and Searching (Ref 16). However, most

- B efficient search algorithms are based upon either data which

e .

‘:,".‘.;:‘; T e i Bt 0 B e A e B B P S UL PP NP G UG Y SO G Sy S U TN VO WP W Gy

is accessible via a mapping function, or are based upon data
which is ordered in a single linear sequence, and thus
mappable as a single association. Data which is always
accessed via the same combination of associations has a

one-dimensional association. Data which is accessed by K

different combinations of associations has a K-dimensional

association.

Regardless of the number of dimensions, associative
access is expected to return all the data items which
satisfy the search criteria. This makes associative access

a set-oriented access method, as opposed to single

element-oriented sequential access methods. Serial and

random access are examples of single element-oriented

sequential access methods. Seguential access is

characterized by data items accessed one at a time. The

access may be in a serial order or a random order.

Sequential processes access data sequentially.

Computers are generally sequential processors of

storage items. Users of associative access must convert the
accessed set of storage items to a sequential form for use
by the processor. This is often done in hardware by
accessing only one of the data items at a time. Attempts at
parallel processing are usually restricted to a small number
of system processors due to interconnection complications
and costs (Ref 30). Hardware implementations are very
expensive for large appiications, are sequential processors

with various storage unit sizes, and are not readily

18

O |
1
1
{
9
1
h
5
1
1
4
r
1
9
?

v
. LY
!
.
.

available (Ref 30).

Summary of Basic Concepts. To implement associative

0~ SIS
T

data access, the associations must be modelled by data
elements, and an algorithm set must be created to operate on

the data elements. The algorithm set must be able to

" it
- ~'.l."x"."va,"

perform the associative access as well as translate an
associative access data set into a sequential access data
set for processing by a computer. Representing data
association structures as mappings can make the algorithm
set a set of map manipulation algorithms only. Thus, the
associative algorithms and map are independent of all the
characteristics of the data element which are not needed for

representing the associations.

Mappings

g AL Lt MRS At Aide
. et} .. d
. n . At] e . N s < « 5 B . B A
s A N A) . L
i PR . t.o2 & . - H . o b, .-

Introduction. A mapping is a transformation from some

input domain of values to some output range of values. Any
input from within the domain results in an output within the
range. Mappings can be pure algorithms, as in hash
functions or numeric functions, or they can be predominantly
data structures, as in virtual memory maps, tree structures,
or vectored directories.

Mapping Algorithms. An N-M mapping is an operation

which inputs N fundamental data elements ordered as an
N-tuple, and outputs M fundamental data elements as an
M-tuple. Each position, in the N-tuple and the M-tuple, is
taken up by a specific type of fundamental data element

which can only take on a specific domain or range of values.

19

The set of N-tuples which includes all possible combinations
of values for the N fundamental data elements is the

N-dimensional domain of the N-dimensional mapping. The

result of the mapping will be an M-tuple of fundamental data
elements, and each of the M fundamental data elements will
have a set of values forming its range. The set of all
possible M-tuples resulting from the mapping of all the

points of the N-dimensional domain is the M-dimensional

range of the N-M mapping. For Pascal record data, the
mapping input may be an index into a table, and the output
may be an address from the corresponding location in that
table; once again mapping into the one dimensional memory
address space of the computer. 1In the real world, an input
could be a street address and a query as to location of the
address, while the output is a string of instructions on how
to get to that address in an automobile. A mapping can be a
simple 1-1 mapping in a one dimensional space, or it can be
far more complex.

Mapping algorithms in computers take on the
characteristics of being memory-oriented, numeric, or
structured. Some samples of data forms and their mapping

requirements are given in Table II. Memory-oriented mapping

algorithms "remember"™ their current location, so the user
must navigate through the range space, always continuing

from the last referenced location. Numeric mapping

algorithms use a numeric function to generate numeric range

20

..........................

TABLE II

Data Forms and Applicable Mappings

Data Form Computer Mapping Types
‘ Which May Be Used
Numeric Structured Memory
Array Yes No No
Heap Yes Yes Yes
Tree No Yes Some
variations
Stack No Yes Yes
Sequential
file No No 1 Yes
Random
access
file Yes Yes Yes

values from numeric domain values. Structured mapping

algorithms use a map, which is a data structure such as a
tree or a linked list, to map input criteria into the range

‘space. Memory-oriented mappings may not require an input,

and thus may be zero-dimensional mappings. The other

mappings are N-dimensional, with N greater than or equal to

one.
Mapping characteristics will be further discussed as

the data element organization and access methods are

discussed. The data element organization can be classed by
how the data structure is accessed "easiest". The three

organization access methods most commonly used are serial

21

LA i) " o - o) -~ o st R SRV e M Sl A gt aast 2tk Solh sed s e hant M T R T Ty Ty W
J—— ~d Gl Ml e duh aten I CRNioR oA RS . T S T L .. ST T e s LR o S L N

N access, random access, and associative access.

Data Element Structures. To analyze data elements,

the different structures can be categorized as though each
data element were a map for finding lower level data
elements, and a set of lower level data elements. An
operation on a higher level data element can then be
considered as a set of operations performing the following

functions:

1. Retrieval of or access to the lower level data
elements via the map,
?! 2. Adding and removing lower level data elements,

and

3. Manipulating the contents or values of lower

level data elements.

The first two of these can be considered the alteration and

use of the map, each using the map for finding specific

lower level data elements. The third item is totally

D)
[} .
R N
et

T
'

dependent on the lower level data elements and their

v
it
AJ '-n

u

associated algorithm sets. Using these operation

?: requirements as differentiators the data elements can be

F; categorized as simple, compound, or complex.

o A simple data structure is a structure such that a

i single algorithm set exists which can perform every desired
A operation on that data structure, and is illustrated as in
E! Figure 3. The definition is independent of the amount of
e .

information present in the structure. A simple data

22

....... o tm e ot e Gy e o N B .-
il atat e A matea adatalasl A oA o Aasanan 2 s A m R oas s el i

SRL T SN EPORCIPUL I T SRR TP

structure can be a single fundamental data element; such as
a measurement, an index, a Boolean flag, or a character; or
it can be any structure for which there is a satisfactory
single algorithm set. Table I shows some examples of data
eiements which can be considered simple data structures.

For real world data elements, the data structures can be far
more complex than is realizeable in a computer, but still
manipulated by a single algorithm set, such as a visual
scene, analyzed by a single glance from a human eye. Simple
data elements are the building blocks of all other data
structures,

A complex data structure consists of a collection of

data elements which cannot be handled by the repetitive
application of a single algorithm. To create one common
algorithm set, each lower level data element must be handled
individually. Thus, at least two separate algorithm sets
are required to process all the lower level data elements.
Figure 4 shows the parallel hierarchies of algorithm sets
and data elements for a complex data structure. The lower
level data elements may or may not be of similar structures,
and several examples of complex data elements are in Table
I. The characteristic which makes it complex is that
processing the lower level data elements requires multiple

algorithm sets.

23

.......................
.................

PR

User Operation

' : ‘:5; Request
High Level High Level

Data Element fg:::;::I::=ﬂ f<:::::::::=ﬁ Algorithm Set

Low Level
Algorithm Sets

Complex Data Algorithm Structure
Structure (Multiple Lower Level
. Algorithm Sets Needed)

Fig 4. Parallel Complex Data and Algorithm Structures

A compgund data structure is a collection of data

elements which may each be manipulated by repeated
applications of a single lower level algorithm set.: Figure
5 illustrates the relationships between the hierarchies of
the data element and the algorithm set. Table I gives
several examples of compound data structures. The driving
property here is that the compound data strﬁcture is
constructed of a level of individual data elements which are
treated algorithmically as though they are homogeneous.

Comparison: Compound Versus Complex Data Structures.

Either compound or complex data structures can be used as
simple data structures once the proper algorithm sets have
been combined to create an algorithm set for the higher
level data structure. The algorithm set for the high level

data structure must include implementations of all the

24

....................

User Operation

‘(f;/ Request
High Level High Level

Data Element/é:::;:::;lz\ /F:::;:::::=\ Algérithm Set

’ ! \ \

[' M
] \

‘\\ . ‘ Low Level
. \\éAlgorlthm Set

L
AN

Lower Level J
Data Elements \!

e
Compound Data Algorithm Structure
Structure (Single Lower Level

Algorithm Set Needed)

Fig 5. Parallel Compound Data and Algorithm Structures

needed operations on the data structure. These
implementations include lower level data element removal and
insertion, selection of the proper low level data element,
and activation of an algorithm set to perform the necessary
operations on each data element. To perform the needed
operations on complex and compound data structures requires

algorithms which can be grouped as follows:

1. High level algorithm set,

2. A selection or mapping algorithm for picking
the ;ow level data element on which to operate,
and

3. The necessary low level algorithm sets.

Oppen (Ref 23) uses a similar approach to describe recursive
data structures, but he uses only construction and selection
algorithms in his definition. Here construction algorithms

will be part of the operation algorithm set, and the

25

--------------- “u R s e * - . S . . “ ...' . " - -
LI S R P TR R U A P UL IS T, ST T B U L Sy PG LA U TP GO S LIPS VU W 1 ke

-y h

)
Y P

e
s e toe

AN
PR

selection algorithms will be referred to as mapping

algorithms. The mapping algorithms may use a data structure

of pointers, in which case the data structure will be

C DRI 8 s
NOSNRRES ~— ERUOSR NS . LA

referred to as the map. If selection involves more than
mapping, then the remainder of the operation will be
considered to be part of the operation algorithm set.

The characteristics of the high level user operations
depend on the map that is used and the actions desired. The
low level operations depend on the actions desired and the
characteristics of the low level data elements. This leaves
the mapping algorithms and the map, which will be discussed

in the next section.

Associative Organization of Data

Introduction. To represent data associations in a

computer, the associations must be modelled using the
constructions available in the computer. 1In this section,
associations among data elements are categorized and the
methods of modelling the associations are discussed.

Multiple associations between data elements are also

discussed, and various resulting model structures are

B

AR 4 AR

proposed and compared.

Data Associations. Data elements can be associated in

many ways, and these associations can be categorized to aid

ﬁ in the simulation of the relationships in a computer. The
?3 main categories are logical associations versus physical
? e associations.

i) A logical association is an association which depends

26

AN A L e - - . N . P . L
e e e e e e e T e e e A
2® ¥ aa'ataal el allal e tateT ettt s Tl a T e lal e w0l B e

e o ~-.‘.J

......

7 PO

e

y iR
s

X ‘- "- l.. '(. ®

X}

Ky

T T Y
B
st

M B URESLAIOATS B v

o

LR 0 ¢ YRR

",

S

p

b

.

............

on data content or some implied relationship between data
elements. A real world example is the fact that plants and
animals are both considered "alive", and thus a logical
relationship exists between them.

A physical association is the occurrance of data

elements "near" one another. In computers, using mapping
algorithms, "near" can mean close in terms of some indices,
even though the mapped actual memory locations are far
removed from one another. A real world example of a
physical relationship is a box and its corners, or a tree
and its neighbor, one of each pair is physically related to
the other. Working from logical and physical data
associations further categories can be expressed and used
for a better understanding of the data relationships.
Logical associations include measures of a single type
which are close in value, but also include categories which
are "close" or related ideologicaly in meaning or usage.
Associations of "close" measurement values are simulated in
a computer by values which are "close" in a numeric or
alphabetical ordering sense. Thus content addressability is
often used for simulating data associativity. However
logical associativity also includes the relationships which
are not easily quantized such as the word pair "feather" and
"sneeze"., These types of logical relationships must be
modelled in a computer by physical links, since their
relationship is entirely dependent on a logical model of

some real event. Thus, through content associations by

27

.
nA.'-.‘_'.-;___A“_,__. SO P S IS WAL AL - L PP S S Y A B B it PP S T SO e s

value and physical graph models, logical associations can be
represented in computer memories.

Physical associations can be considered in two
categories, association by proximity, for data elements
which are "near" one another, and association by links, for
those which are not necessarily "near" one another. The
sides of a box are "near"™ one another, as are consecutive
locations in computer memory, and thus are associated by
proximity. Two cities may be connected by a single highway,
and therefore associated by a link, much as a linked list in
a computer memory. Both of these associations, proximity
and link, can be considered the same if mapping functions
are taken into consideration, because a link is a structured
mapping. However, for the purposes of this paper, in
computer data structures proximity will refer to adjacent
memory locations, or members of a single block of memory,
while link association will refer to association via address
pointers, as in linked lists.

Both logical and physical data associations may be
represented by combinations of proximity, link, and value
associativity. These three forms of associativity are
commonly used in computer algorithms and data structures,
but they are not referenced as forms of associativity.

Serial access data structures use association by
proximity. Association by value is used when the serial
access data elements are ordered by value so that an

efficient tree search can be used to retrieve specific data

28

T

h

)

L

f7~T.Wﬁ,?,,h,
A SARRAART YRR

&

Y

Dutte g ol SUELA
[REN

elements. This results in elements which are “"close" in
value being in physically "close" proximity to one another
in the structure also.

Random access data structures allow the use of direct
pointers to data element locations. This allows indexed
access to any data element, and, through tables, trees,
linked lists, or numerical calculations, allows many data
elements to be "close" even though they are widely separated
in the actual data structure, thus utilizing link
associativity. Linked list and tree data structures (Ref
1; 10; 15; 34) are common examples of link associativity
among data elements in computers utilizing random access.
Tree structures and networks of links (Ref 10; 15) can give
a multidimensional aspect to associations among data points.

Since computers are designed around random access
memories, content associative access is a task of using
actual proximity, value, and link association to retrieve
data by simulating a pure content association from the
random or serial access data. This has been attempted many
times in many ways (Ref 17; 27; 30), and most ways included
a number of exhaustive serial searches.

Multidimension Data Associations. Associations among

data elements in a data structure may be categorized by the
number of ways data in a specific structure can be related,
or associated, to the other elements in the same structure.
A serial array of data elements may be associated with one

another only by proximity, or they may also be ordered and

29

- T i e B S S e b A B P S Uy A I N A

..........

KA« 1)

3

e
-

l.

v v ‘7.'1'. f| 7 b '7" K ..
A P QRO I *TAOURRN P SRS

oy

thus also be related by value. The number of associations

between data elements can be considered the dimensionality

of the associative structure.

Association by proximity in a serial access data
structure gives the data structure a one dimensional
association. In random access data structures, such as
arrays in memory, the association can be considered to be
based on the number of dimensions of the array, ie. a four
dimensional array would have a four dimensional association.
In this way, the dimensionality of the association between
data elements can be used as a measure of complexity of an
associative data structure.

Multidimensional mappings can be used in random access
data structures to map multiple indices into one dimensional
memory address spaces. This allows multidimensional
associations to be represented easily. The multidimensional
mappings allow multidimensional proximity associations to be
simulated through numerical mapping functions. These
multidimensional mappings can also be simulated using tree
or network structures of pointers which result in pointers
into a one dimensional space. The pointer implementations
of multidimensional proximity associations make the
structured mappings more flexible than numerical mappings.
Therefore, to simulate all types of associations, structured
mappings are the most flexible tool available.

To use structured mappings for modelling associations,

some association description conventions must be stated.

30

These conventions will describe the associative data sets in
terms parallel to those of data elements, allowing easy
modelling of data sets as data elements.

Data Set Forms. Groups of data, or data sets, having

multidimensional associations may be organized in a number
of ways. The three data base forms; network, hierarchy, and
relational; are three varied approaches and will be used to
illustrate the different forms of associative data. The
main characteristic of interest here is whether the
associations are homogeneous or nonhomogeneous.

A homogeneous association of N dimensions is a compound

data structure. There are N different associations, and

every lower level data element is associated to every other

by all N associations. 1In a relational database relation,
- this is illustrated by not allowing any null attributes in
any primary key fields of a tuple.

A nonhomogeneous association of N dimensions is a

g O arae
o' e R
ST PR

complex data structure. There are N different associations,

but at least one lower level data element does not use them

LG S0 Jom o

TR

e
DR

all. More often, only a few of the N associations are used
by all the lower level data elements. This type of
association is prevalent in a network data base, where
different data elements have different forms and thus are

associated by links having different meanings.

A Hierarchical database, if observed in levels, can be

considered a hierarchy of data elements as in Figure 6a,

) e A . Y
. R RIS
. [T .o
« M Lt

31

......

T T ————— St~y (R S

At

wt
LS
Y.
(3
.
[

S —— High Level Data Element

] \ ,
I‘\‘\\\\Efg\x\\‘tt‘\\\:l Lower Level Data Elements

(One Set, Homogeneous)

.- = —~__ \Lowest Level Data Elements
T~ 1 Y (Two Sets,

Each homogeneous)

a. Hierarchy of Compound Data Elements

= High 1 1
- . o gh Level Data Element
{ ‘1\5\:=\\ (The Whole Structure)
l \ \
' \ \
\ \

Lower Level Data Elements
(One Set,
Non-homogeneous)

\

b. One Level of Complex Data Elements

........

Fig 6. Two Views of Hierarchical Data Elements

32

with each level having homogeneous associations. However,
an equally valid view of a hierarchical database is as a set
of low level data elements, together making up a single high
level data element as in Figure 6b, and thus has
nonhomogeneous associations between the low level data
elements. The point of observation, whether it is at a
certain level within the data structure or at some point
outside the data structure, determines whether the
hierarchical database is a hierarchy of compound data
structures, and homogeneous at every level, or a single
level complex data structure, and nonhomogeneous.

Associative Data Models. Many simplifying assumptions

must be applied before the volume of real world data can be

reduced to forms which are meaningful and useful to model in
a computer. Models of data sets with homogeneous
associations are fairly straightforward, and this paper will

limit itself to the analysis and implementation of such a

i% model. Data sets with nonhomogeneous associations are not
i;? so easy, and will not be considered beyond this section.

5‘ For more information on structures which are useful for

Ef modelling nonhomogeneous associations and manipulating those
g} models see references on graphs (Ref 1:50-52; 10; 16).

f; Homogeneous associations can be modelled by low level
:f data elements which contain N fields, one for each of the N
Ei associations between data elements. The data set then takes
Fi on the features of a relation in & relational database (Ref
?f 9). The low level data elements become the tuples, and the
¥

h 33

!

N fields representing the associations become the attributes
for that relation.

For a one-dimension association, the model can be as
simple as a one-dimension array of numeric or character
values. For multiple dimensions, the model can be a file of
of logical records or a table of records as in relational
databases. 1In a sequential access data structure, the data

may be ordered on the values in one of the fields or a

combination of the fields, or it may be unordered. Random
access data structures enable a more complex ordering using

ﬁ structured mappings to give a multidimension "nearness" to

the data elements.

"k Data ordering becomes very important when the user
. starts evaluating time regquirements for accessing lower
level data elements. Ordered data can be accessed by binary
search techniques in order(log(N)) time, while unordered

data can only be accessed in order(N) time (Ref 16).

Associative Access to Data

Introduction. Associative access to data has been seen

as a panacea to mend all data retrieval problems, but

o
P
e

e,

£
a
.
b
]
<
-

)

N LI

without a fast response with correct and complete results,

’
AeLd .
R

associative access is useless. A serial search and compare

4
4

h 111-11

3

of all data in a data set is, technically, an associative

retrieval. There are faster methods in use, and the

Ty

proposed Associative Data Access Method will be compared to

these.

The flexibility of an associative access method will be

34

e P R T
MR . e B T
0 P

AR R |

R
e
Lew
[
Pes
v-\
;

et tie e el ¥l ik e A o eea A e a -

measured by how well it retains its favorable properties of
speed and structure uniformity as the number of dimensions
of associativity is increased.

One-dimensional Associative Access. Many applications

take advantage of one-dimensional associativity. It is
often used for accessing ordered sequential data in a random
access mode. To use one-dimensional associativity is just
to take advantage of the ordering and use a binary search,
whether the search uses a numeric mapping, or a tree
structured mapping, it is still one-dimensional associative
access. The forms are common and can be found in Knuth (Ref
16). Their ease of implementation have given the
one-dimensional associative access methods wide application.
The multiple binary trees in the relational databases
force the user to access one primary key at a time. After
selecting all the data meeting the search criteria on that
primary key, the resulting retrieved data set has NO sorted
or structured access available. For extremely large data
sets, which result in large data sets after the first
retrieval, any further selections on the data set will
either be intolerably slow, or some structure must be
generated to recreate the associative access previously

available. Therefore, the secondary selection process is

the downfall of parallel one-dimensional access structures
in multidimensional association applicationsl!
To avoid losing the capability of further rapid

asgociative access after a first retrieval, the results of a

ittt - el A R L L A M A A T e

retrieval should be in an associative data structure. Also,
to prevent having to perform numerous selections, one on
each of numerous primary keys, A structure which merges the
binary trees for searching on all primary keys at the same
time would be advantageous. Such a structure would give
rapid multidimensional associative data access.

Multidimensional Associative Access. Mapping each

association into bounded numeric intervals, a
multidimensional association then defines a region similar
to a bounded vector space. Allowing the top level element
in the associative structure to represent the entire region,
then the next level down can split the region into equal
parts. For K associations there will be 2K equal parts, and
each association will be split in half at that level. The
result is a binary tree in K dimensions. To access the
tree, the algorithm must movg’aown to a level then perform a
search of the smaller regions at that level. The search
becomes one of comparing regions, the search region versus
the small sub-regions defined by each node in the structure,
as illustrated in Figure 7. For each node, the region it
represents is either totally within the search region,
totally outside the search region, or the two regions
overlap. The search algorithm need only look further down
the levels of the structure for those regions which
partially overlap the search region. Those nodes which are

fully within the search region are retrieved, intact,

36

L A IO U AT S SO SO ST P . Thalan e mlmatleladan

= 54 54 D4 DG 54 5E D4 5¢ D4 B¢ D¢ B4 3¢ 4 X4 ¢
A 54 B¢ 54 D¢ 54 54 54 54 54 ¢ 54 X4 54 B¢ X4 ¢
A 3¢ 54 ¢ 54 4 2 D¢ 54 D4 >4 54 ¢
. 56 3¢ 54 HEDE 54 D4 54 54 54 >4 54 3¢ >4 ¢
b 5 54 M 5NN NN NN Y e
A 53¢ OF ¢ SNUONCNNUNININN I X ¢ X
3¢ 3¢ 55 NUONNUNNUNN N X 6 Bk 3¢
§ 54 3¢ 54 B NN NN 54 b e
b 54 B¢ D415 SN NN D¢ B4 4 B¢ X 04 K e
- ¢ 3¢ 5 5NN\ 3¢ 4 54 e ¢ O ¢ e
N e N Y L
EE R CASS N T
o R I R I
R R ;
56 D D DD DD DD D M N |
. 54 D¢ DE DG D D4 4 B4 D4 24 2 B¢ |

4
//
// Inside

3

37

Level=
Level=

XX

b.
XX Overlap

Node Regions Versus Search Regions, 2 Dimensions

Outside

X4
-
- am

Fig 7.

.................

into the retrieved structure. Those which are fully outside
the search region are merely ignored. |
The multidimensional associative access structure |

described has some interesting properties:

1. It can consist of uniform structure elements
which make up the nodes of the associative tree.
2. At each level any one of a number of search
techniques can be applied to select the proper
sub-regions.

3. The structure consists of levels of
homogeneous data elements.

4. The number of levels needed are determined by
the amount of accuracy or number of significant
binary decisions necessary to differentiate
between the two closest data elements.

5. Only those nodes which represent regions

containing data need be present at any level.

6. Data elements may differ in the value of a

ConC o e 00 4
-lrn wd T

single primary key and still be represented as

)
Ix

G I Y00

distinct from one another.
Eﬁ 7. For certain applications, the difference
SE between two numerically close data points may
Eg considered irrelevant if less than some set

resolution threshhold. Thus, by setting a

resolution threshhold, the number of levels can be

g0 7 420600

limited and data points closer than the specified

resolution will be mapped to the same point.

38

N et .
L e e A, - R P AT .- . . .
L‘ PR APSL AN Wl T T Ak T it S, SR, PO, VR S i WP W e PN DU UEir SR SPNE WU D IV 1 NE S) : P ¥ U S NN W

. <

Aaid rt i oy e

A R WA PR R Pk
R TRCAK P N T I A
verra o a e At et AP S

e

.......................................

8. Searches for data can include multiple
disjoint regions and still be performed in a
single retrieval.

9. The entire associative access structure can be
merely a mapping, allowing the data elements to
reside elsewhere, including such media as paper
files, magnetic tapes, books, or multiple floppy

disks.

This versatile associative access method will be called
Associative Data Access Method, or ADAM. ADAM will be
analyzed, based on accepted performance criteria, then

implemented.

Associative Data Access Method (ADAM)

Introduction. For associative access, ADAM will use a

generalized set of associative access calls, defining the
associative access algorithm requirements. The algorithms
are designed to hide the actual implementation particulars
from the user for ease of use., ADAM will also use a
multidimensional associative map data structure to model the
multidimensional associations.

Associative Algorithm Set. An algorithm set is needed

to implement the necessary functions to be performed on the

associative data set. This will be called the associative

algorithm set. To perform associative access, the user must
be able to CREATE the associative data set, ADD data items

to the data set, FIND data items satisfying given search

39

: SR N L. o e . - -, . - - . S
e el atlaT e lala el A A al a o B p A e essarics o 3 W

e |

YT TY T et T
R IR [N B
' - T L

:

T T R N T W W A R P S
LT LY - [P R N

criteria, and to DELETE uneeded data items. To perform
sequential processing on the items in an associative data
set there must be a RETRIEVE function to convert a found
associative data set into a sequential data set. The
following is a formalized definition of these functions,

using formalisms of Horowitz and Sahni (Ref 10).

structure ADS(item,size,K,index) Assaciative Data Set
SDS(item) Sequential Data Set
RDEF (index,value ranges) Region Definition

declare CREATE() ---> ads

ADD(ads,item) ~---> ads
FIND(ads, index,rdef) ---> ads
DELETE(ads, index) ---> ads
RETRIEVE (ads, index) ---> sds

EMPTY (ads) ---> boolean

for all m in ads; i,j in index; DIV in item; RD. in

rdef; s in sds let

EMPTY (CREATE)::= true
EMPTY (ADD(M,DIV))::= false
DELETE(CREATE) : := CREATE
DELETE(ADD(M,DIV),i)::=
if DIV in RDi then DELETE(M,1i)
else ADD(DELETE(M,i),DIV)
FIND(CREATE,i,RDi)::= CREATE
FIND(ADD(M,DIV),i,RDi)=:=

if DIV in RDi then

40

...........
............

g M A amae. Al .o am e ssni <anmle sesine oniBie) deami aseehi dfeetee S dui bt S i Jemadi e e B A 4
- P e ‘i - R T - Vo T e R - - . - .
— . P y— —~ LAl St . - A . .

e e N TR T RN et . R . et R L Ta . - E . .

ADD (FIND (M, i,RD,),DIV)
I else FIND(M,i,RD,)
= RETRIEVE(CREATE,i)::= ¢
RETRIEVE (ADD(M,DIV),i)::=
if DIV in RDi then
union ({DIV}, RETRIEVE(M,j))

else RETRIEVE(M, j)

end

end

The functions EMPTY, CREATE, ADD, DELETE, FIND, and
RETRIEVE are the operations a user should expect for any
data set where data is to be stored, later retrieved, and

possibly deleted. The FIND and RETRIEVE functions are often

treated as a single function. Because RETRIEVE is a
translation function from an associative data set to a
sequential data set it is treated here as distinct from

FIND.

g This formalized definition not only gives a user's view
g of how the operations are used, but also define a set of

g functional tests. The functional tests will be the basis
for final software acceptance, the prelude to performance
measurement.,

Associative Map. The ADAM associative map is a

T

hierarchical data structure where each level is a compound
data element. The overall map structure is made up of
A uniform data elements which form a set of homogeneous data

elements, making the map structure a compound data

41

............ S Lo, FR o . o . . S R RO . . . e e .
L‘_" PO U I A SAT R WL NI SR SR RLAPY N LI ST SN TSNP SRR IO WP SN, LIPS SIS WP DY S WA WO SR WY WS SRR SRS AR N O R B BB Lo Mo B A

- e o v

v 2 e S e A P A I I A DT T

A A At ga iy oI SR SO A A . et - e N -
R, T R I A T o T N

structure. Binding the manipulation algorithms for the
homogeneous elements with the access operations defined
above turns the associative map into a simple data element,

The map, with its algorithm set becomes an associative
mapping from the K associations of the data items to the
stored indices which uniquely represent the rest of each
data item. The index may be the entire value, or it may be
a pointer into a separate sequential data structure,
allowing random access to its elements via the retrieved
data set of pointers.

ADAM Summary. ADAM is an associative access mapping

from K keys to a single data item. The data items should be
accessed on any combinatioﬂ of keys in approximately equal
time. ‘

Associative access via ADAM will be restricted to data
sets containing homogeneous data elements, each with K keys.
It will be a K dimensional access mapping, and can be
applied to databases requiring a fast, yet space-efficient,

sollition to the secondary key access problem.

Quality Assurance Requirements

] -

To assure the highest quality software, good software
engineering techniques will be used. The design is to be
top-down, and the code is to be modular, with a high level
of cohesion. All mainrline functions of modules will be
performed using passed variables. However, some debug and
input/output operations may ase COMMON or global variables.

The software package will include the ADAM algorithm

42

.................

.......

set as its nucleus. However, to allow easy developement and
debugging, and to create a user training program, an
interactive application program package will be implemented.
Each associative data access operation will be interactively
callable, with complete error checking on all inputs. The
user will also be allowed to dump the ADAM data structure to
display or print, as well as turn on and off some function
trace printouts.

Recursive procedure calls will be avoided. Also the
hidden allocation of data storage will be avoided. This is
to allow easy translation of all the program modules to
low-order languages such as FORTRAN or assembly language.

The program package will be implemented in a manner
which allows its use on small computer systems as well as
large. For the purpose of this portability and ease of

stating data descriptions Pascal will be the language used.

Summary

The ADAM hierarchical map structure and associated
algorithms will be implemented in Pascal in a form easily
translatable to lower order languages such as FORTRAN. It
will be designed with portability, modularity, and
maintainability as prime considerations.

An interactive debugging and training package will also
be designed and implemented. This package will include
"HELP" lists of legal commands and meaningful user prompts.
The package will also test all user inputs for validity

before attempting to alter the ADAM data structure.

43

RSO WY Y PRI ST WO S W W'Y . P Iy F- PO . Aorbemmon > .

............

IITI Design

Introduction

This chapter presents the overall structure and
algorithm design of ADAM. Though the design started first,
the implementation followed close behind. Many of the
design decisions were chosen because of difficulties found

in the implementation of the procedures in the Pascal

language.

The evolutionary sequence of design decisions is
Ei presented, then the design itself is presented. 1In the
development and design of ADAM a number of design tradeoffs

were considered. The final product is one version of ADAM,

but other versions are discussed.

Design Evolution and Tradeoffs

Introduction. An ADAM data set is a data element and

its associated algorithm set. To implement it in a computer

requires resolving the computer representable data structure
to use, and determini-.g the algorithm operational

requirements. The design evolution presents successively

B2 e am e 4 ame o
.! ...‘.‘.r . oo
2 :‘.".‘.'-‘:"

e

more storage-efficient data structures for storing the data

and allowing rapid access to collections of data points

ey

using data point "location" within the space, and the

necessary algorithms to take advantage of the structures,

The evolution includes considerations of a "full space”

vr-
Yy

data set with numerical mapping or hash functiom access,

‘,
4

then hierarchical access. Hierarchical access is refined to

44

...... Ca L e N .~ . : . .~ e
........... .-tat. LR R Pt i P e R PR P W 5 LRSI ¥

LA

14

ey - v
A A OETRERE

Gt v
et B

multidimensional binary trees, and these are revised to
allow unbalanced trees with missing data regions. Once the
overall associative access structure is described, then ways
to minimize the storage for each node are discussed.

Full Space Representation. N linearly ordered, equally

spaced data points can be mapped to the N indices in ([1,N]

using

i = 14(v-m)*s

s = (N-1)/(M-m)

where

i is the data item index,

v is the data item key value,

m is the smallest data item value,

s is the scale factor,

M is the largest data item value, and

N is the number of data items.

Multidimensional ordering of equally spaced data points can
be stored in a multidimension array of locations, and
accessed by numeric index mappings via a hash function.

This is the most rapid way to associatively access fixed
precision multidimension vectors (Ref 25). However it takes
2LK data locations, where L is the bit length of each
association dimension value, and K is the number of

dimensions. A 3-dimensional region with 15 bits of accuracy

requires (32768)3 locations to store all the possible

45

g ~v- v @ v -
v &

ot B FAFI

TLTL DR

‘Tr"":-) f{‘
PER SRR PN
C R XN

IR .'
e
Voo
F
b
bl
b

) P ORLOTES PAdAT I Pan

Ml Snel SR JEme Smm S-St " g S Pt

A L R A

combinations as an array.

The ADAM is designed assuming that such an association
space will be less than 1% filled! This assumption may
preclude its use in some applications, but ADAM is intended
to fill the gap, and be a practical, space-efficient way to
represent and access data in such a space. Assuming less
than 1% fill would leave an array representation with 99%
wasted space.

Hierarchical Access. Binary tree access to data items

commonly is height balanced around the data points present

to minimize the number of levels required for a search (Ref
10:442). In ADAM the multidimensional binary tree data

structure is region balanced around the normalized ideal

association space. This ideal "box" in K dimensions is then
subdivided into further ideal "boxes" at each successive
lower level. For data of a fixed precision, the region
balanced tree is restricted to the depth required to
represent that precision. ADAM gives, rather than a minimum
number of compares to access a particular point, a fixed
number of levels of compares for any given precision data
set. Height balancing a tree structure over data points
requires adjusting the tree form as points are added or
deleted. Region balancing, however, places the root node
over the entire region, then divides the region up into
equal parts, each part being represented by a region
balanced subtree. Adding new data points and deleting old

ones in a region balanced tree affects only the path from

46

3 SR v vamie s A WA

AR

e T I TR T L T e e e e, TR e T e

the root to the new or old data point. Thus, points can be
added and deleted without affecting the whole tree. This
structure stability allows region balanced trees to be
accessed by multiple users, and thus, can allow dynamic
associative access maps with multiuser properties. Region
balancing also lends itself well to multidimensional binary
decision processes.

Multidimensional Binary Trees. If, at each level, each

dimension is divided in half, then each dimension undergoes
a binary search in the process of searching from the top
level to each successive lower level. At each of these
levels, there are 2K possible subtrees, each representing
one of the possible combinations of decisions in K
dimensions. There are several ways to access these 2K
possible nodes at a single level. Among these ways are the
CARTAM structure, the K-D trees, and m-way trees.

The overall structure will be referred to as the major

tree structure. Each level may have its own structure,

depending on the method of representation. The structure at

each level will be called the minor structure. The minor

structure differentiates between the methods as follows:

1. CARTAM has a linear linked list as a minor
structure,

2. K-D trees have a binary tree minor structure,

and

3. M-way trees may have any minor structure.

47

y— w g e e A A e e e - ~x. ~ -~ - T.r.F
A g I B I S R A S A e * A . - . N A . .)
L G N A N P T T

CARTAM's minor structure is a linear linked list (Ref
24). Missing subtrees need not have a node in the linked
list. The number of nodes required varies from 1 to 2K, one
for each subtree present. The search at a level is linear,
requiring at most n compares for a retrieval when n
subregions are present.

Associative access via K-D trees uses a binary search
at all levels. Bentley (Ref 3) height balances his K-D
trees, however the structure could be used for region
balanced trees also. The K~D tree uses a K level binary
tree for its minor structure, where the ith level
corresponds to a decision in the ith dimension. This form
requires between K and 2K nodes for its structure at each

-o level in each subtree, and for a search decision in only the
Kth dimension the entire binary tree at each level must be
traversed.

ADAM uses the CARTAM linear linked list minor
structure. This gives minimum storage utilization for
levels with only one subordinate subtree. This also
simplifies the search algorithm for each level to a simple

= linear search, irregardless of which dimensions are used for
the search criteria.

This form of the ADAM tree structure could be almost

s

represented by the m-way tree of Horowitz and Sahni (Ref

10:496). ADAM, however, allows a node to have a single

L4;-
-
&
b

™ .
-
L ~
L:;-

child, while m-way trees, including quadtrees (Ref 5; 1l1;

12) and B-trees (Ref 10:499), require at least 2 children

48

O R AL B 0]

PR A
‘:,~ ¢t
L LSEUR VO JA G A

2
PR

x
e
W

Nt e

S P Bt
P

I
PR)

T T T

B P RRMARREE I NRRERY

for each node. The nodes of ADAM, rather than dividing the
entire data set in half, add one bit of resolution to each
of the K dimensions at each level for each of the K
associations represented. ADAM does not have a strictly
binary tree structure when viewed in term of the levels, and
for K dimensions and L levels of precision, ADAM retrievals
can require between L and 2KL, decisions for retrieval of a
single data item.

Migssing Data. Allowing for data points which are

missing can cause much space to be wasted. As shown above,
array representations are almost useless in many
applications due to the wasted space allowed for missing
data points. The m-way tree representations also have this
problem, but it is not quite so obvious or severe. Using a
variation on the m-way tree definition of Horowitz and

Sahni, the ADAM node form may be shown as follows:

A node, T, is of the form

n'AO'(Kl'Al)'(KZ’AZ)' s e '(Kn,An)

where the A., for 0 < i < n are pointers to the subtrees of
T and the K;, for 1 < i < n are the key values.

To reduce the storage requirements of the nodes some of
the fields can be implicitly stated. 1If all the fields are
present and the node is a fixed size, then n can be
eliminated. Since ADAM nodes represent ideal regions rather

than stored points, AO is not needed to point to the stored

data. The K,'s can be implicit if all the A, pointers are

49

................................

present, and the relative positions of the pointers
determine their key value, as can be the case in ADAM. The
keys in ADAM are merely the numbers from 0 to 2K-1 for ADAM
nodes at all levels. However, for missing data points, the
pointers are not needed. Often, only one or two of the
pointers may be needed, and the rest of the 2K pointers will
be wasted space. For values of K greater than 2, this
approach wastes significant storage space. ADAM's solution
is to create a linked list of only those pointers which are
needed at each level, each accompanied by its key. The

final forms of a node and a level in ADAM are as follows:

- A node, T, is of the form

(P,K,A)
- A level, L, is of the form
(Pl'Kl'Al)'(PZ'KZ'AZ)' cee o (Pn,Kn,An)
- The Ai pointers, for 0 < i < n < 2K—1, point to
the first node in a subordinate level or to data.
- The P; pointers, for 0 < i < n < 2K-1, point to
the next node at the same level or to a parent
node.
- for any level, 0 < K, < Ky, < 28-1;
l1<i<ng« 2K-1 where K is the number of

dimensions.

This form also allows the ADAM nodes to be of uniform
size, eliminating many of the complexities of storage

management for irregular blocks of storage, including

50

..........

T

. b
.

';1

E:
Y

complex algorithms, space needed for garbage collection, and
possible storage fragmentation due to unuseable "leftovers".
This same level structure of linked lists is used by CARTAM
(Ref 24). '

Retrieval Regions. CARTAM nodes, adapted for use by
ADAM, would require 2 pointers per node, 1 region index per
node, and 2K floating point numbers for the key in each
node. The region index is added for specific ADAM
applications in categorization. The two pointers are needed
for suppression of unused pointers. This leaves the key
representation as the only portion of the node which can be
reduced in size using ADAM'Ss constraints.

The 2K floating point values in the CARTAM key
represent the subregion center value in each of K
dimensions, and the region size in each of the K dimensions.
The region size can be implicitly represented, and the
center value can be shortened substantially. The techniques
are presented next.

CARTAM restricts the total representable region to a
finite range of values in each dimension. Also, each level
represents a halving of the higher level. However, CARTAM
allows levels to be suppressed if there are no branches.
This allows terminal nodes to exist at higher levels
throughout the structure. By not allowing the suppression
of nonbranching levels, the size of the represented region
can be implicit for the node level. For a node at level L,

the size in each dimension of the subregion for that node is

51

~

-l

T o
P]

B & VSASEPURETAn: (SSAY

vrrvryvvey
SO A

(RO 464

'.'..‘.'A.«ln"':'.'.'. B

N 9% < or

N e aie e e M e A
............

1/(2L) of the entire region's size in that dimension.

The overa.. region size, since it is bounded and
finite, can be normalized via a linear mapping to the half
open range [(0,1). Once normalized to this range, the Lth
significant bit in the binary representation of each of the
K numbers becomes the only needed key at the Kth level. The
top level keys become the most significant bits of the K
normalized values. Then, the next level's keys are the next
most significant bits, and so on, to the bottom level, where
the keys are composed of the least significant bits of the K
normalized values. This bit-wise decomposition of the
dimension values into level key bit patterns results in the
numbers 0 to 2K—1 as the possible key values at each level.

!!) This reduces the number of bits required for representing
the region centers from K floating point words to K bits.
For K<16 this results in less than one 16-bit integer word
per key.

Map Storage. Often data storage includes not only the
key data fields, but a number of data fields which, though
not used for searches, contain information to be retrieved.
In relational databases these non-search data fields are
those attributes which are not considered keys

(Ref 9:87-88). These will be called non-key fields. Date

(Ref 9:87) defines a primary key as a field which is unique

to every data item in the data set. For a large number of
data items in any order in a file, on paper or disk, a

;}; primary key can be generated. The primary key can be as

52

.............

PP |

YE L
I v
. P

‘et

¥,

e T TR RT T Pl
' ‘- v . . . s s e l‘.l
LA DR PR LS T,

iT %

T

el 2% s il
R N A
PP .

Ak ol o JUR S o DA
SADAATRACAR

e

simple as the position index of the file in the set of
files. ADAM is a mapping from the K keys to such a position
index.

The ADAM data structure becomes a map from the K keys
of the K associations, into the primary key position
indices. To use the ADAM data structure, the user need only
store the K keys and the value of the position index. The
task of retrieving the entire data item then becomes two
smaller tasks, that of associatively retrieving the data
item index via the K association values, and the task of
then retrieving the data item itself via the position index.
Since the position index is a primary key, then the latter
task is trivial, and may even be «xternal to the computer.
ADAM consists only of the associative mapping from the K key
values to the position index.

Retrieval Forms. The sequential processing of a

computer demands that the retrieval of the primary key
indices be in a form sequentially accessible. However,
sequential forms are not amenable to further associative
access. Therefore, ADAM allows the user to FIND associative
retrieval regions within its map as in Figure 8, and also
allows the user to GET the indices of the retrieved data
items in a sequential form as in Figure 9. Associative
regions can be retrieved in either of two forms, parasitic

maps or flagged nodes.

53

= RPN DL NP - DLV W UK YU U VS, S VUL (i i T EUE S G U S S S S

———r (et 2 ’ e < W W Danihes " . Pl N Rl i
S e e e A S S S T——— T !
R R A e T T UL o U IS AN .

3
;

O\Ull.waH

ADAM Universe Map User's Data
Set

@

Fig 8. Associative Access via The ADAM Map

1 [

2 3

3 * 4

4 * "

5 * / -

6
ADAM Universe of Indices Ordered Sequential
(* -indicates retrieved Retrieved Data Set

index.)

Fig 9. ADAM Ordered Sequential Retrieval

54

...............

Parasitic
Map

Base or
Universe Map

Fig 10. ADAM Parasitic Retrieval Map

A parasitic map is an associative map which has no
terminal déta nodes of its own. Instead, it has terminal
references to nodes within a base map. The base map is the
entire retrieval map, while parasitic maps point to subtrees
within the base map. By pointing to only subtrees within
their retrieval region, parasitic maps need duplicate only
the base map structures which contain subtrees both inside
and outside the retrieval region. Subtrees entirely inside
the retrieval region are pointed to in the base map, and

subtrees entirely outside the retrieval region are ignored.

55

A d

Figure 10 illustrates a parasitic map with its references to

the base map. Parasitic maps have the following advantages:

- They do not have to reside in the same map node
buffer as the base map.

~ They may exist in a user's file or memory space
while the base map may be in some other user's or
the system's memory or file space.

- One base map may have any number of parasitic
retrieval maps.

- Set operations of UNION and INTERSECTION can be
performed on multiple parasitic maps of the same

base map.

The other retrieval form is via flagged nodes in the
base map. Any number of regions can be represented this
way, however the regions must be encoded by some method to
allow for naming, region overlap, and representing large
numbers of regions in small data fields within the nodes.
This method of region representation is shown in Figure 1l1.
Some of the methods considered for encoding the regions are

region index encoding and region flag fields.

56

—r
AP
e,

T~ v T
PRI RN
v P

al 8 e

rrTY

R Rk

SR St S waa Selete Shas i e Aiite - wi Al RS A A oY

R *1' R' [

. N

*

»

ADAM Universe Map w/Region Flags

R'-indicates subtree is not

* -indicates a retrieved index/data item.
R -indicates subtree is in retrieval region.

(I L
*

User's'DAta
Set

in the retrieval region.

Fig 11. ADAM Flagged Node Retrieval Map

The region flag field metnod consists of reserving 2

flag bits for each region within each node. The bits in a

region flag field are interpreted as follows:

- Bit 1 =1 indicates the
of the retrieval region.
- Bit 2 =1 indicates the

of the complement of the

For each node the retrieval region

57

aadnnand PP R P LI TP 2O 3P SN S T

node region contains part

node region contains part

retrieval region.

can then be represented

B

as follows:

Field=10; Entirely containing the node subregion

Field=01; Entirely outside the node subregion

Field=1ll; Overlapping the node subregion

Field=00; Unknown relationship beween the

retrieval region and the node subregion.

The major drawback is that to maintain a small node size,
the number of bits used to represent retrieval regions must
be severly limited.

The alternative is region index encoding, where each

combination of regions used is stored into a table. The
index into the table is stored in the node to represent the
region intersection combination for that node. This can be
effective only when the number of region combinations used
is small.

ADAM uses the region flag field approach, and limits
its number of retrieval regions to 8 regions, requiring a
total of 16 bits per node to represent the region flags.
The parasitic maps were considered and rejected only because
of time constraints in program development.

Summary of Tradeoff Results. ADAM assumes that the

association space is a bounded finite region, and that the
data points fill less than 1% of the space. To take
advantage of the excess space and still give rapid access to
the points of the region, ADAM implements a multidimensional

levelled binary search tree similar to that used in CARTAM.

58

P . e . o g PR PP U AT DAy SO g G - PR PR

AP W SR g

ADAM, however, taking advantage of some of the properties of
the association space and the hierarchical structure to
reduce the key sizes, uses much smaller nodes than those
used by CARTAM. The resulting nodes in ADAM can be as small

as 4 fields, each consisting of an integer word or less.

ADAM

Introduction. The Associative Data Access Method

(ADAM) is designed to reflect an associative data mapping
technique. An ADAM data element will consist of an ADAM map
structure and an associated algorithm set for performing the
desired operations on the map structure. This section
presents an interpretation of the model used in the
structure, the structure of the data element, and an
overview of the basic algorithm set needed to build and
access the data element,

Mcodel Interpretation. ADAM is an associative data

element which can serve as the basis for associative

applications. For a real world data element of K

AL
et L.

associations to be implemented using an ADAM data element,

0
Ja

the K associations must be mapped into a K-tuple of

|

numerical values, with each association represented by one

“ﬁ-‘-‘-
(]

55 I GRS P AN

of the entries in the K-tuple. ADAM uses a rational

numerical value in the half open interval [0,1), excluding
the upper limit, for each association. For K associations
the resulting ADAM structure will be a K-dimensional unit

"box" as in Figure 12 (K=1, 2, and 3).

59

.............

(0) (1)

L LY
LY L4

a. 1 Dimensional "Box"

(0,1) (1,1)

(0,0) (1,0)

b. 2 Dimensional "Box"

(0,1,1)
(0,1,0) v (1,1,1)
h +1,0)
(0,0,1) 4
(0'0'0) &(1,0,1)
(1,0,0)

¢. 3 Dimensional "Box"

Fig 12. ADAM Unit "Box" Regions

60

The top level node of the ADAM map structure represents
the entire unit "box". The lower levels represent
progressively smaller subdivisions of the "box" into smaller
"box" regions. Each lower level node represents a
subdivision of the region represented by its parent node.
Each dimension is "halved" at each lower level, such that at
the top the intervals are [0,1) and at the first level the
intervals are [0.0,0.5), and [0.5,1.0). The combinations of
these intervals in each dimension give 2K smaller "box"
regions at each lower level for each higher level "box"
region, or, for a 2-dimensional region, 4 smaller "“box"
regions for each higher region, as shown in Figure 13. Each
lower level therefore, gives successively smaller regions,
and thus, successively better resolution for locating points
within the K~dimensional vector space defined by the top
level region. A region at the 30th level measures 1/(230)
on a side. The 30th level region is within an overall space
which is of length 1 on a side. This gives accuracy to
about one in 1 billion, or 30 bits of accuracy.

Using the convention of "0" representing the choice of
the lower half of an interval, and "1" representing the
choice of the upper half of an interval, then the decisions
at a single level, in all K dimensions, can be represented
by a K-tuple of "1"s and "0"s. The region reached by that
combination of decisions can be designated by the K-tuple
which represents the combination of decisions. The K-tuple

can be considered a K-dimensional decision vector,

61

.........

..

&
(0,1) (1,1)
(0,0) (1,0)
a. Top Level Region
o (.5,1)
-
A
o (0,.5) (25,.5) (1,.5)
|
4 N
i
(0,0) (.5,0) (1,0)
b. First Level Regions

¥ig 13. ADAM Region Halving by Levels

62

.......

representing the decisions required to get to the region the
association vector represents.

Figure l4a shows how the subregions of a single level
of a 2-dimensional space can be represented using the
decision vector notation. Figure 14b demonstrates the
concept extended to three decisions in each dimension. By
concatenating an additional bit for each decision onto the
right end of the ith bit string in the K-tuple for the ith
dimension, K-dimensional rational numerical vectors are
formed. The vector components are bit strings representing
rational numbers. The number of significant bits desired in
the bit strings is the number of levels needed in the map.
The bit patterns of the K bit strings, one for each
X w dimension, represent the decisions required at each level to
find the region in the ADAM map. These bit strings
correspond to the normalized numerical value for the

association, truncated to the number of bits for the level

of the lowest decision.

het]

l,. 0 _.l.

oy
O

The bit string vector is a decision "trace" for each

v
3

ROCOEE P ADEDE P A

dimension to any point, or data item, in the structure. The
trace is the string of 0/1 decisions at each level to get to
that point or data item. For 30 levels, the trace is a
vector of K 30-bit numbers which represent the numeric
location of the node within the normalized "box"
representing the association space. This location vector is

truncated at 30 bits, and thus gives 30-bit resolution

H
3
¥

63

......

1
(0,1) (1,1
- 0.5
(0,0) (1,0)
0
0 0.5 1
a. First Level Regions
1 .
(00,11) | (01,11) | (10,11) (11,11)-
o. 75 -
(00,10) (01,10) (10,10) (11,10)
0.5 : i
(00,01) (01,01) (10,01) (11,01)
0.25
(00,00) | (01,00) (10,00) (11,00)
0
0 0.25 0.5 0.75 1
b. Second Level Regions

Fig 14. Bit String Vectors for Region Designation

............................
...................................

..............

rational numbers. Points which differ only in the 31st bit
position will not be discernable in a structure limited to
30 levels, and thus will be mapped to the same location in
the structure. Arbitrary accuracy can be achieved by
gsetting a specific limit on the number of levels in the
structure,

This model displays the following properties:

- All data must be "normalized" to the half open
numerical interval [0,1);

- The structure is hierarchical;

- The accuracy of the model is dependent on the
number of levels represented;

- The access to associated data is a “"top down"
search process, starting at a root and searching
the entire structure, as opposed to a
“near-neighbor"™ process, which starts at any given
position and searches the "nearby" points first;

- Each region node can be treated as a uniform
data element, differing only in subregion size and

location in the space;

- The physical interpretation of the structure
can be a levelled K-dimensional binary tree, where

each dimension is divided in half at each level.

T AR R Sty
< LS L
ol R RN

g

T

R

gf %

NCRUR

M2 2 A 20e 2
kbt S

PR

65

..

Sibling/Parént Pointer

Child/pData Pointer

User Level Search Key

Area Region Index

Fig 15. ADAM Node Structure

The Structure. ADAM uses a hierarchical structure.

~ The structure consists of levels where any or all but one of
.the nodes at a level may be missing, yet all the nodes are

. uniform. Each node has two pointers, one to a twin node or
parent ﬁode,'and the other to a child node or data item. No
unused or null pointers exist in the ADAM structure.

The nodes in an ADAM map are constructed as in

. Figure 15, and the user area contains the key field and the
gegion flag field. The overall hierarchical structure can
be viewed as levels of linked lists, with the last node at a
level pointing back to the parent, allowing traversal either
up or down the tree structure. The data structure is shown
in Figure 16, and is similar to that implemented in CARTAM
(Ref 24). Like CARTAM, if no data points are present in a
region, then the.node for that region need not be present in

the structure.

...................

Region Nodes

Top Level

Level #1 | ~ _1 F—1

Levgl #2 - | _—1

Leaves, or Data Nodes

Fig 16. ADAM Map Hierarchical Structure

Each node represents a K-dimensional "box" region, and
must have associated with it a region size and some

1ndication_of where it is within the association space. The

size of a region is implicitly defined by the node's level
in the ADAM map data structure. The position of the region
in the association space is explicitely given by the "trace
bits" in each node's key and in each key in the nodes at
each higher levei. _

CARTAM stores both the center value and the "delta", or
size, for each dimension, thus requiring 2K floating point

numbers for each node. ADAM, by normalizing the data, can

67

......

TN e el AT e T e

R ba ol
o
'
[

v o Laka
AR . &

Y A
: e

.17-r1[.
e acee D
VLAt E.....:»
PR . . .

b el RdE ORI i A Rl Al

assume that a specific level always has a specific size
region associated with it, and thus can rely on just a level
index for the size of a node region. Also by normalizing,
ADAM can assume that all data at level L under a single node
will differ only in bit number L for each dimension, and
thus the center value is determined by K bits. Using K bits
in each node, representing the "search key" for the node,
requires that every higher level node be present, but other
nodes at the same level need not be present. Using the
10-level example from above, the two data items would
require only 12 nodes to store them.

An alternative to the K-bit string is to store K traces
in each node, however this substantially increases the node
size over the K-bit string decision vector form. To
suppress levels of nodes, the K-trace would have to be in
each node, and a level index would have to be in each node.
Small gains are made . by each form for specific structure
variations, but ADAM uses the K~bit string because of its
small node size. The nodes will be of the form in
Figure 15, with the K-bit string in the user field area.

The ADAM space is a K~-dimensional vector space and
includes all the possible values to be taken on by a
K-dimensional vector. Each component of the vector is an
association key value, and is a rational number

representable by L bits and in the real interval [0,1l).

68

W

These rational numbers are to be representable in the form

L
i
Z bi(1/2)

i=1

where bi is an element of the set {0,1}. This gives the
binary representation of the rational number as the
concatenation of the bi's, or

b1b2b3 LI] bL

This, in turn, allows the trace vector to be expressed as
(bllblz LI blL’b21b22 s e e sz' LI) ,bKle2 LI bKL)

and the level search key for the jth level is the jth bit of
each of the dimension traces concatenated into one string,

or

The Manipulation Algorithms. The ADAM map, to be

useful, must allow the user to build the data access map,
revise it, and selectively retrieve the data items from it.
These operations are shown as ADD, DELETE, and RETRIEVE in
the data flow diagram (DFD) of Figure 17. The DFD also
shows the FIND operation, which is used to identify regions

for later retrieval.

69

PRI P . - . e T . . . R v L
.o e e e . S . T R R N S . . e STt L et AJ
o PR I PR LNt e . TSPUL P SPP W WUy A AU SPUF VR ANY WP Sy | RPN WY P S i

Size

Create
- ADS Map
‘n bat
Data Data

User |— Item Item
RD “‘
Region ‘ Find
Region

I\ SDS
Retrieve
Region

ADS-~ Associative Data Set
SDS-~ Sequential Data Set
RD--~ Region Definition
Size- Max Size of ADS
K---- Number of Dimensions

Delete
Region User

Fig 17. DFD of ADAM Algorithm Set

To ADD a data point to the ADAM map the K association

key values, of L bits each, are converted to L K-bit level
search keys. The L level search keys are then used to

search for matches at successive levels. When a match is
not found at a level, then a branch is built, storing the

remaining keys in the lower level nodes. The new branch, if

70

e A e N . IPUEEUP P PP IS DT GPT W WU S s § -

L) ne e g 4
PRSI

successfully built, is then inserted into the highes: level

where no match was found.

Both the DELETE and RETRIEVE operations rely on region
indicators to determine which subregions to consider, but
the region indicators are set by the FIND operation. To
DELETE data points, first the region is selected by a FIND
operation. All the data points within the region can then
be DELETEdA. The terminal nodes, or leaves, within the
region are returned to free stcrage, and any higher level
nodes which exclusively supported those leaves are also
removed and placed back in free storage. To RETRIEVE data
points, the region is also first selected using a FIND
operation. The subtrees above and within the retrieval
region are then traversed in their entirety. During the
traversal the trace vectors are stored and the association
keys are rebuilt. The retrieval can then return both the
association key and the data item index for each data point
retrieved.

The FIND operation depends on the region descriptions
for its complexity. ADAM is implemented with only simple
multidimensional rectangles. Complex data structures, data
samples, or functions could be used to define retrieval
regions. The FIND operation searches each level, comparing
the subregions with the retrieval region. The comparison

can give one of three results:

- The node region overlaps the retrieval region.

- The two regions are mutually exclusive.

71

N - ".A' A'- .

-
X N
3

M.
h:
e

'd

EEES
S

- The node region is entirely within the retrieval

region.

If the two regions overlap then the search must continue to
lower levels. If the regions are mutually exclusive then
the node and its associated region can be ignored. If the
node is entirely within the retrieval region, then it can be
flagged as such, and neither its nodes nor subregions need
checked further.

The ADAM operations ADD, DELETE, FIND, and RETRIEVE as
described fit the formal definition for an associative
algorithm set are given in Chapter II, under the subsection
on the associative algorithm set. ADAM customizes their
implementation to handle the ADAM map structure.

Summary of ADAM. ADAM has some interesting properties.

These can be grouped as structural, algorithmic, and

application properties. The structural properties of ADAM

are as follows:

- ADAM consists of uniform structure elements
which make up the nodes of the associative tree.
- The number of levels needed are determined by
the amount of accuracy, or number of significant
binary decisions necessary to differentiate
between the two closest data elements.

- Only those nodes which represent regions

containing data need be present at any level.

The algorithmic properties are as follows:

72

N N . - .) ‘o . . e . - N s
L R P S VT U PR SV N SURE NP NP SPUIT I S S VR S TP SIP LSS - S AE B DR

....................

~ At each level a linear search is applied to
select the proper sub-regions.

- Searches for data can include multiple disjoint
regions and still be performed in a single

retrieval.

The applications properties are as follows:

- Data elements may differ in only the value of a
single primary key and still be represented as
distinct from one another.

- For certain applications the difference between
two numerically close data points may be
considered irrelevant if less than some preset

resolution threshold, and thus by setting a

resolution threshold, the number of levels can be
ff limited, and data points closer than the specified
ii resolution will be mapped to the same point.

- The entire associative data access structure is
merely a mapping, allowing the data elements to

#ﬁ reside elsewhere, including such media as paper

files, magnetic tapes, books, or multiple floppy

= disks.

ADAM is an associative access map, mapping the K keys
of a K dimensional space to a single data item. ADAM allows
retrievals as associative access maps for successive
retrieval operations. It also allows retrievals as

sequentially accessible data sets. Although retrievals

73

R e A A SRR A PP U P U S T DT e S U AL S S LI L I U

could be as parasitic maps, ADAM has been limited to flagged
node retrieval regions to reduce the program development

time. Eight retrieval regions are allowed at one time.

The ADAM Program Package

Introduction. Three major methods of design were used

to coordinate the program and data structures for ADAM.
Data flow diagrams were used to coordinate the module

u' interactions. A program control structure was used to show
the hierarchy of control among the program modules. Also

Warnier-Orr data diagrams were used. These allowed the

specification of the data structures early in the design
phase. These diagrams are given in Appendix C.
In line with the problem statement of Chapter I and the

quality assurance requirements of Chapter II, the program

o was designed in modules using a top-down approach. Also, the
program package was implemented for portability and use on
small computers as specified in the requirements and problem

statement.

Data Flow Diagrams. Appendix B contains the data flow

-
»

Ty e TR SNLK
SAESDAAEAR e N
PR -] S

ég diagrams f-~r the ADAM program package. Data flow diagrams
%g were used to coordinate the module/data interfaces and to

S; organize the operation sequences. The lowest modules in the
i! diagrams occur only as activities, with no further breakout
{ for their sub-activities. The diagrams present the overall
-; picture of data flows and transformations within the main

ﬁ! modules of the system,

Program Control Structure. The ADAM program package is

74

NS SR SO S S

a collection of procedure modules, many of which are solely
for the support of the five main procedure modules. To
coordinate the module calls the hierarchy of control diagram
of Figure 18 was created. The higher level modules call the

lower level modules as indicated by the downward pointing

arrows.

Data Structure Diagrams. The structure of each complex

ﬁi data element is described in the Warnier-Orr data structure

diagrams in Appendix C. The data elements included are the

following:

User input data item vectors,

User input region descriptions,

- User supplied map buffer area,

Formatted ADAM map buffer, and

- Level search key/ trace bitstring structure.

These are not all the structures used, but they are the

significant ones. All other structures use one of these

patterns.

Overview. The ADAMTEST program package was written

for machine independence, and to run on microcomputer
systems as well as larger systems. The programs were
ﬁi written modularly for ease of implementation and later

translation to other programming languages as needed.

75

ettt et e e et e i At e e e e mmm e e ek e Daman e Bea Temte s i b Mm B M“M...,.*.J

(GEIcELD) (REICELD)

Fig 18. ADAMTEST Hierarchy of Control

L

e
FEAPRAN
r F) ‘l

N
2y
;

v
.

ey -~
T Ay e B,
O P

YT T

..............

The ADAMTEST package is implemented to run on a TRS-80
Model I, with 48K of user's memory, because student
competition for AFIT systems makes their use inconvenient.
The TRS-80 programs can be transferred as needed using an
RS232 serial interface, or a telephone modem. The TRS-80
also made a good example of a common small computer system
on which an ADAM program package may be useful. The
programs were compiled and run using the ALCOR PASCAL
compiler and runtime support package on the TRS-80, using
three 5 1/4 inch floppy disk drives.

The ADAMTEST program package is modular, and includes
an upper level of interactive procedures, allowing the user
to activate the map operations in any desired order. A
DEBUG module was included to allow dumping the map to the
display or printer, and to activate certain trace functions
in the different ADAM procedures.

The nucleus of the package consists of the ADAM map
manipulation algorithms and their necessary support
procedures. The package is written to run on any computer
which has a PASCAL compiler following the language

definition of Jensen and Wirth in PASCAL User's Manual and

Report (Ref 14). Recursive procedure calls were avoided to
allow easy translation of the ADAM procedures to other

computer languages for general application.

Summary

ADAM allows the user to access data via a map. The map

takes K dimensions of associations, or key fields, to a

77

LS
()

Eaa

T ,Tw
L WX

Y

* .
b Tl

* e
ol

‘o
-~

.
add,

.............

single index. This K dimensional mapping, when applied to
metric data, simulates associative access by using a region
balanced multidimensional binary tree. The major tree
structure of the associative mapping is an m-way tree. Each
node of the m-way tree has an internal structure called the
minor structure. For ADAM the minor structure is a linear
linked list, requiring a linear search at each level of the
major tree structure. Data is retrieved as subtree
structures, and a retrieval subtree can be translated to a
sequentially accessible data structure.

The ADAM map reqguires the user to normalize all data to
the half open interval [0,1) before storing it. The
operations available are ADD, DELETE, FIND, and RETRIEVE.
FIND returns retrieval maps, and RETRIEVE translates the
retrieval map into a sequential form.

The map form gives the user a single index for each
data item in the retrieval set. The actual data items do
not need to be in the computer for ADAM to speed access to
them. 1Indexed paper files, storage bins, or computer disk
file records could be used as the final data storage to be
accessed via the ADAM map.

Parasitic maps can enhance the usefulness of ADAM maps
in a multiuser environment. The overhead storage for each
parasitic map can be totally within the user's address space
and disk file space, making it easier to keep accounts of
user space and time requirements, and their usage of the

data set. The current implementation, due to development

78

A

;(rrr}
e

P

time constraints, does not implement parasitic maps, but

T
&

¢t 8.
L 3 LI Y .
y A.oal LI -
. ah_ A‘.~‘4
e,
e
AR
.t
.

- ak

instead uses flagged nodes to mark retrieval regions.

The ADAM program package is implemented within an

kS

interactive control package called ADAMTEST. The ADAMTEST

PX AT
0

-y
PRI RIRY

package allows the user to interactively activate each of
the ADAM operations, and, using a DEBUG module, to inspect
the map directory, map contents, and certain traced

variables during the ADAM operations.

v T

TR AN
AR BORT I PRI
Lo sttt Tt e

The five basic ADAM procedures are designed to allow an

AL
NS

- associative data type. The procedures perform all the
&i necessary operations to allow the user to utilize the data
s type. The ADAM library allows the user to access many

associative maps. Each map contains, in its directory, the

needed information to manipulate the map, such as number of

dimensions, number of levels, and size of storage buffer.

NSNS

R
!

ol o
W A f
R 3 RSN

T
'l"" l"

(AR

OB &

PSR A]
¢«
H

(AN
M
SO

79

L T . R . A - . - . - N
PP o) Ui P VI SRS WO Tl P SR U LY LI WY P . PYE R . el

Iv Implementation

N Introduction

This chapter discusses the implementation of the ADAM
procedures. The language and machine selected are
4; justified, along with reasoning for algorithm portability.
Finally the use of modularity is discussed, including module
interaction, structure, and internal code characteristics.
~§ The organization of the program package is presented,
including comments on the application of the ADAM algorithm
Ja set. The use of the interactive program package ADAMTEST is
also discussed, as well as the use of the ADAM routine
Qé package alone. Good software engineering techniques are the
v '!! driving force behind many of the implementation decisions.
‘ These were used throughout to satisfy the quality assurance

requirements of Chapter II.

Implementation Particulars

Introduction. ADAMTEST was implemented on a single

_5 small computer, but intended to be generally useable on any
large or small computer. It also was implemented in a
single language, but intended to be translated to others
easily by any programmer with moderate experience in the
target language. Language constructs not easilly translated
> from Pascal to other languages were avoided. These
decisions are software engineering techniques, and consider
possible future uses of the program packag~ (Ref 26).

Environment. The ADAMTEST program and ADAM routine

80

L‘;"l‘,ll; r] '.‘: N ‘». '.:

...............................

R
’-‘

LN
gl

IO
I

package were implemented in Pascal using a Model I TRS-80
with 48K of user memory. The compiler and linkeditor used
was ALCOR Pascal, by ALCOR systems of Garland, Texas. The
programs were run under the LDOS operating system, for the
TRS-80, from Logical Systems Inc. of Mequon, Wisconsin.

Pascal was used because it uses strongly typed data
structures and, by not using GOTO's, enforces rigidly
structured code. Also, it is available on most large and
small computers, using the Jensen and Wirth definition (Ref
14). FORTRAN was considered for its universality, but no
structured version is available for the TRS-80, and it does
not have the data structuring of Pascal. Other languages
considered were ADA, not available; C, not universal enough;
COBOL, not available; Z80 assembly, not universal enough;
and BASIC, not structured or universal. Pascal also allows
easy translation to and from structured English, and is thus
easily translated to other languages.

Considerations. Once the algorithms are defined in

Pascal, the conversion to other languages are easy. Certain

capabilities of Pascal, however, are not easy to implement

in other languages. These are recursive procedure calls,

NEW and DISPOSE free storage management, and pointer

variables. FORTRAN, COBOL, and BASIC have no universally

defined recursive procedure calls. Free storage management

is also not found in FORTRAN, COBOL, or BASIC. Both of the

concepts as well as pointer variables, may be implemented at

specific installations, but they are not part of the ANSI

8l

............................
.......................................
...................

............

standard which is the universal subset of the languages

R

{' : implemented at most installations.
fj Recursive procedure calls were avoided by implementing
the state machine in AMAPTRAV and by using an explicit
position stack to move through the map structure. Position
and data stacks were used in the procedures AADD, ADELETE,
AFIND, ARETRIEVE, and AMAPTRAV.
Free storage management was the next complication.

F. Pascal accesses storage as needed from the "left over"
memory using the NEW procedure. 1In some implementations,
Pascal also allows the storage to be freed again using the
- procedure DISPOSE. Languages such as COBOL and FORTRAN
@x don't allow this management of undeclared storage in "left

” over"” memory space. To insure complete control nver the
N memory space used, the map buffer is explicitely declared in
the calling routine, then the free storage management is
N initialized by a call to ACREATE. Having explicitely
declared map storage also allows storing the entire map to

disk by serially indexing through the buffer locations,

v s
B IRN

Wes

allowing easy saves and restores of intact associative data

maps.

» \ LRt
AR P
. l"l 4 L}

Using a declared array of nodes for free storage,

% permits a node location to be referenced by an integer

R index. This eliminates the requirement for pointer
variables which point to absolute memory locations in

N undeclared memory space. Languages such as FORTRAN, COBOL,

By and BASIC can implement the array storage and index

integers, thus the buffer and index convention is better for
translation to these languages.

Restrictions. The ADAM program library is restricted

by the ADAMTEST application in both size and use. Through
ADAMTEST the user can only interact with ADAM via the
standard input, standard output, and the PRFILE list output.
The size limitations make the ADAMTEST program package too

restricted to apply. It is intended only for manipulating

the ADAM map and debugging the ADAM routines,

:i The ADAMTEST package was implemented to allow

éi interactive use for debugging the ADAM routine package, a
software engineering technique for simplifying the testing

process. The map buffer was restricted, for the ADAMTEST

application, to MAXNODES=50 map nodes, which allows about 10
data items for a 6 level map structure. For widespread
application the constant MAXNODES must be set to a value
large enough to contain the desired data items. See Chapter
V, Space Requirements, for an estimation procedure for ADAM
map space requirement.

The number of bits is limited to 16 as the constant
MAXBIT, and the number of regions to 8 as the constant
MAXREG. These are set for the maximum number of Lits that
can be contained in a 16 bit integer, and can be adjusted as
the integer size changes on other machines.

MAXDIM is fixed at 10. This gives a maximum linear

210

search of up to =1024 compares at each level. Larger

values may be unreasonable, and are discussed further in

83

HPP I DA D Lottt L j

o U S S T A R S L PO m o a sl PR U S U T ¢

..........

Chapter V.

Program Organization

Introduction. The ADAM implementation is three major

functional packages under the control of the ADAMTOP, as
shown in Figure 18 of Chapter III. These functional
packages are the ADAM routine package, the interactive user
interface package, and the debugger user interface package.
With minor modifications to remove debugger functions, the
ADAM routines can be used without the others to support usar
applications.

The ADAM Routine Package. The ADAM routine package,

implements the associative algorithm set. The routine
package is in four libraries, ALIBl, ALIB2, ALIB3, and
AUTIL1. These libraries are listed seperately in Appendix
D.

ALIBl contains the ACREATE and AADD procedures for
creating an empty ADAM map and adding data items to the map.
AADD contains the procedure BUILDB, which builds a single

tree branch, a subtree with only one path. BUILDB is only

used by AADD. ACREATE and AADD also refrence procedures in
AUTIL1 to perform operations common to ALIB2 and ALIB3.
They also reference the variables and procedures which are
used for debugging only.

ALIB2 contains the AFIND, ADELETE, and ARETRIEVE
procedures for finding a defined region, deleting a found
region, or retrieving a found region to a sequential

retrieval form. REMNODE, a procedure only referenced by

84

D-R124 674 RSSOCIHTIVE DATA ACCESS METHOD (ADAM)(U) AIR FORCE INST
] OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING
) JR HOLTEN DEC 82 RFIT/GCS/EE/82D-19
. UNCLARSSIFIED .F/G 972

dl—: - ¥

- ,..‘..... TR, 4

g L} -.-l. .«.! .
»

AL AN

N e

IR
N

Gt T
~%~~ -l
«
1
i
'
i+

L e~ e
L'lv,.lnb.(e

. , HEEE <
: FEFEETT =il

NATIONAL BUREAU OF STANDARDS-1963-A

1.0
.1
125

_ MICROCOPY RESOLUTION TEST CHART

...m .v -
-wun ' ’ . ”.L
i
i e e
.,” R ..L
| ol
_v..h
c 4

w
W W, -4

ADELETE, is within ADELETE, while AREGCOMP and ARSET are
only used and therefore are defined within AFIND. The
procedures in ALIB2 reference the procedures in ALIB3 and
AUTIL1 to perform common operations. This library also has
references to debugger variables and interactive output
routines.

The procedures in ALIB3 are ARSELECT, which selects the
proper region bits from the region flag field in a node, and
AMAPTRAV which traverses an ADAM map and returns status
flags which indicate the type of node currently being
vigsited. Another procedure, AMOVE, is in ALIB3, but it is
only used by AMAPTRAV. AMOVE performs the actual position
index adjustments necessary to move through an ADAM map.

e ARSELECT references the common routine BITPU in AUTILI.
ALIB3 does not contain any references to the debug or output
routines, but does reference the global print file PRFILE.

The library AUTIL1 implements a number of the common
operations required by the other modules in the ADAM program
package. The procedures in AUTIL1 are grouped by operations

which are performed as follows:

-Free node manipulation; GETCELL, NEWBUFF, and
RETCELL;
-Bit manipulation; BITPU and CRTLSK; and

-Map manipulation utilities; NODEINS and MAPSRCH.

Only CRTLSK calls BITPU and references the debujgger

variables and output procedures, otherwise all of these

85

LR R S S I SR
TR S PPN K 8

e ey v
Y PR -
R P N T AT e

procedures are "bottom level"™, calling no other procedures.
The ADAM routine package can be used as a stand alone
library to be linked to a user application program, but for
this project it was manipulated by the interactive control
routines in the interactive user interface package.

The Interactive User Interface Package. To create,

build, and use an ADAM map with enough flexibility to
quickly debug the ADAM procedures, a high level set of
control routines were used. ADAMTOP is the top level
library of the entire program package. 1Its structure is
shown in Figure 18 of Chapter III. The program name is
ADAMTEST, and it contains the high level procedures
ADAMCONTROL, INITIALIZE, and HELP.

INITIALIZE is called once ’.0 initialize global
variables which contain needed constants. These are MASK,
an array of bit masks; PRFLAG, the print/display routing
flag; BITFLG, for enabling bit array trace printouts; and
VECFLG, for enabling integer vector trace printouts. Once
these variables are initialized ADAMTEST passes control to
ADAMCONTROL which remains in execution until the command
"STOP" is input in response to the "ADAM COMMAND=" prompt.
The legal commands are in Appendix D under the ADAMTOP
library listing of the HELP procedure.

The ADAMCONTROL procedure calls several procedures from
the library AINTER1l to perform interactive input and output
of specific types of data elements.

The only ADAMCONTROL command other than "STOP" which

86

does not activate an ADAM map manipulation routine is "DEB".
"DEB" activates the debugger user interface package.

Debugger User Interface Package. To interactively

inspect the ADAM map after each operation and selectively
trace certain variables during some operations, the debugger
was implemented. Once activated, the debugger continues in
- control until "STOP" is given in response to the "DEBUG

E‘ COMMAND=" prompt. The debugger resides in the library
ADEBUG. The package consists of the main routine ADEBUG and

its support procedures, PRTNODE, DUMPDAT, OUTDIR, and HELP.

The command "DIR" allows the user to dump the current
map directory, and "DUMP" allows the user to dump the map
buffer contents. The directory is dumped by a call to
OUTDIR, while the map buffer is dumped by a call to DUMPDAT.
DUMPDAT repeatedly calls PRTNODE to print each node in the
interval of node indices the user selects.

The other commands of ADEBUG are given in Appendix D ,
in library ADEBUG, in the procedure HELP.

Summary of Program Organization. The procedures in the

ADAM routine package are designed to stand independent of 7

the interactive control package, but have had some debug

functions inserted into them. To use them independently the
debug functions must be removed.
Using the ADAM routine package, interactively or

otherwise is the next consideration.

87

The Use of ADAM

Introduction. The ADAM routine package may be used

interactively via the ADAMTEST program, with the full
debugger capability, or it may be used seperately as a
procedure library for supporting applications programs. To
use it seperately, however, the debugger functions inserted
in each of the ADAM routines must be removed.

Interactive Use of ADAMTEST. The ADAMTEST package is

fully interactive. All user inputs have prompts, and there
is a "HELP" command to get the list of commands printed out.
For commands requiring additional information the user is
prompted further. All inputs are checked for validity,
although the checks are for range only on numeric inputs.

(t’ Alphabetic inputs, when numerics are expected, can give
results which may be implementation dependent.

Initially, printouts of retrieved data are routed to
OUTPUT, or the display file. By activating the debugger
using "DEB", giving the debugger command "LIST", and then
"STOP", to return from the debugger, all further retrieval
outputs will go to the print file PRFILE. The output can be
returned to the display using the debugger command "DISP".

While in the debugger the trace commands "BITS" and
"VECS" toggle trace flags, reversing their status each time
the command is used. "BITS" activates the bit array trace
printouts, while "VECS" activates the integer vector trace
printouts.

"DIR" and "DUMP" debugger commands give the user a view

P AL AT LTSIk IS LR, S A 1 ILPIUACRITNE T N SPUC TP TP ACIPLITPT W Tt SE AT T M YO S ST PRSP SRy PR R A i o G |

." I" ks

) .’g'. (X7 4‘,
AA N

. w’

g
.

e P AR

” .
o8 St teV,
PLE AP

48
.

_n"a'-,,' 2.
N

Yo tatalal s
.

of the current status of the map. "DUMP" prompts the user

to input an interval of map buffer indices, allowing the
user to inspect portions of the map buffer selectively, or
all at one time. These both output their data to the

current retrieval output device.

The user may wish to apply the ADAM routine package

without the problems of interactive data entry. This is
also possible.
Applications Use of the ADAM Routines. By linking

LIB1, LIB2, LIB3, and AUTILl object libraries to a user
package which has external references to ACREATE, AADD,
AFIND, ADELETE, and ARETRIEVE the user can access the
algorithm set directly.

The proper global data types must be declared in the

user's calling procedures and passed in the ADAM procedure

calls. These data types include ADAMMAP, PFILE, DIVEC,

REGDEF, and SEQDS, as found in the declarations in the
library ADAMTOP in Appendix D.

All references to the debug variables, interactive I1I/0

routines, and global variables also must be removed from the

ADAM routines. These include references to the variables

PRFILE, PRFLAG, BITFLG, VECFLG, and MASK.

To speed up the ADAM routines, the procedure BITPU in
the AUTIL1 library should be implemented in a language which
allows rapid bit retrieval. Rewriting BITPU can eliminate

the need for the bit masks in the array MASK.

A view of the module interactions is necessary to allow

89

...............

- e

the user to modify the routines as needed for use with

applications programs.

Program Modules

Introduction. A useful tool, the hierarchy of control

diagram, Figure 18 in Chapter III, was created for showing
the module control hierarchy. Using it, the interaction
between modules can be graphically presented. The hierarchy
of control for the entire ADAMTEST program is presented.

The types of module structure are then discussed. Other
useful characteristics of the module source code-is then

discussed.

Module Interaction. The hierarchy of control diagram
shown in Figure 18 shows the pattern of procedure calls.
ADAMTEST is the main program, calling INITIALIZE and
ADAMCONTROL. From there control passes downward from those
which have no further procedure calls.

This graphic representation illustrates that there are
no recursive procedure calls. Programming languages such a
FORTRAN and COBOL do not allow recursive procedure calls,
thus, to ease translation into such languages, recursive
procedure calls were avoided.

Although Figure 18 illustrates the hierarchy of
procedure calls, this is not the only way the modules
interact. Module coupling must be considered in more depth.

Almost all the modules have only "data" coupling, where
all communications are through passed arguments. These

exceptions are the print file, PRFILE; the debugger flags,

90

................................

BITFLG and VECFLG; the print flag PRFLAG; and the bit mask
array MASK. These are all treated as "external" coupling,
where the routines share a COMMON data item.

Module Structure. The good Software engineering

techniques, required for quality assurance by Chapter II,
dictated the size and cohesion of the modules (Ref 26). The
body of each of the modules was kept below 100 lines of
code, and thus is two pages or less in the source listing.
Being short modules, the cohesion can be easily observed.

In most cases the module cohesion is functional, however the
exceptions are AMAPTRAV and AMOVE.

AMAPTRAV has sequential cohesion. It is activated to
perform one of a set of operations on a single data
structure, which is the higher, informational cohesion. To
do the operation it performs a sequence of operations. It
implements a state machine to perform the operations. Given
the program is in a specific state, which state it goes to
next is dictated by its input. The state machine is
illustrated in Figure 19. The state and the input also

determine the output in RESULT.

91

- ™
.
* - -
B> -
e e
- e
.
- :“_s
bl

‘ | wvariable ‘Meaning

CUROP State Variable

values
N STATUS Input

(Down, Across, Up, Stop)
(Attop, Empty, Atbot,
Term, Endlev)

o RESULT Output (Top, Newnode, Leaf)

Empty, Atbot/ Top

others/ Newnode

. Term/ Leaf
. t‘. Across others/ Newnode
[Y K :

Endlev/ ---

Attop/ Top

v - ' others/
i | . Newnode

Fig 19. AMAPTRAV State Machine

- "i}

92

AMOVE has strict informational cohesion. It implements
ni T the map move operations UP, DOWN, and ACROSS, and performs
" one of these each time it is called.

The modules each have other characteristics which aid

in understanding and maintaining the code.

Module Code Characteristics. The modules were written

to be easily debugged and maintained. Transportability to
other computer systems was also a consideration. To achieve
these goals all Pascal code was restricted to the statements

found in Jensen and Wirth's PASCAL User's Manual and Report

(Ref 14), and the source code was frequently clarified with

comments for the reader.

One module, BITPU in the AUTIL1l library, is very
p D inefficient in Pascal. Pascal does not contain commands to
§ readily convert integers to bit patterns or bit patterns to

integers. Using arithmetic operations is the only

relatively non-machine dependent method of implementing the
bit packing an unpacking needed. For specific applications
this procedure should be implemented in the machine code for
the computer used. BITPU is called for every node compare

made by the FIND, DELETE, and RETRIEVE operations.

Summary

Implemented on a Model I TRS-80 personal computer in
Pascal, the ADAM package is designed to be portable. The
few machine dependent particulars are discussed, and the
code is written to be easily translated to other programming

languages.

93

...... ST e e .
........ ST . . PR - . - - DU - e S R “ .
[TR S ol P TR T R T N T T T T T a2 N P P A A A PN Smdia a S nlatatey

2 . ADAM's modularity gives the program package

S understandability, readability, and maintainability. With
only a couple of exceptions, the ADAM modules have
functional cohesion. The exceptions are well documented in
the code.

4 Good software engineering, for quality assurance,

required a user-friendly human interface. The interactive

ADAMTEST package contains tests wherever possible to assure

the user cannot easily get faulty inputs into the program

system. The abundant, strategically placed input tests,

o available "HELP" listings, and meaningful prompts make

ADAMTEST an interactive aid to learning the use of ADAM

. maps.

‘!3 ADAM does contain some implementation dependent
restrictions, however these are dependent on a maximum
integer size of 16 bits. If the maximum integer size is
smaller, the constants must be readjusted. However, if the

maximum integer size is larger, they need not be changed.

ol
-
]

pr

&l
«

<1
.

'
-
¢
L)
H
-
3
v
X
-

94

.Y - L e . L T T et
L P T et gL AT g A Y g v s PR i FE T T T T AT S Y e T e e
. S, I T I TIPS R AR . .
TP SR TN S VLN VN AR BT . AP I L AP R ST A e . RO RPUE IR YRR SR A VU o W S Sy AT wP R SR & Y U ARy oy, § a)

V Analysis

Introduction

Some estimate of ADAM performance characteristics will
be derived in this chapter. ADAM will be compared to other
methods of data storage, mapping, and retrieval to determine
the tradeoffs between methods. The ADAM map will be
analyzed for its space requirements, and the ADD, DELETE,
FIND, and RETRIEVAL operations for their time complexity.
The structures to be compared for the above characteristics

are

1. Linear unordered data sets, the benchmark;

2. Linear ordered data sets, the optimum
l-dimensional access structure, allowing
simple binary searches on a single ordering;

3. Multiple dimension linear ordered data sets, a
commonly used procedure for multikey access,
and obtained by combining multiple attributes
for a single unique key;

4. M-way tree forms in general with a comparison
of

- Fixed node sizes,
- Binary trees in each node, the K-D tree,

- Linear linked lists in each node, CARTAM
and ADAM.

Some variables used in the analysis of the various

95

.. e e A B - e T B ot o Tt s Kl s tim o a b acem oA Al Al s A s sl

S e .

. access techniques are as follows:
3’ = N number

- K number of dimensions or associations shared
by the data items in the data set

of data items in the data set

~ L number of levels in the m-way tree major
structure

- P number of bits of precision for the
representations of the dimensions or
associations

- s size of one storage unit, in bits
- R =(K/e)(K+1/2), the base of Stirling's bounds
on K!, where e=2.71828.. (see CRC Standard
Mathematical Tables, 14th Ed, 1965, page
433).
First the space requirements of each technique are

considered.

Space Requirements

The space requirements of the different methods for
storing data for associative access are analyzed for
comparison, with a summary in Table III at the end of this

section.

Linear Data Sets. Linear data sets need store only the

K keys and the data item "value" in a sequential array in a
random access form. Assuming each key to be P bits in
length, and the data item "value" to be Sv in length, then

the total size, ST of a data set of N data items is

ST = (KP+SV)N (v-1)

and if SK and Sy is a single storage unit of s bits, then

96

S,r = (KP+s)N (V-2)

bits. This is on the order of KPN, or O(KPN).

Multidimensional Linear Ordered Data Sets. Data sets

with multidimensional linear orderings must have orderings
for every combination of the K keys to be comparable to K-D
trees, CARTAM, or ADAM. This gives K! orderings, which
require at least K!-1 pointers for each data item. For
homogeneity it is simpler to consider K! pointers, each of
length Sp bits. Also, for each data item, the K keys of
length P and the data item "value" of length SV are also
stored. These are stored for each of N data items, giving

the total space requirement as

ST = (K!SP +KP +SV)N (v-3)
If SP' SK and SV each one storage unit, this gives
S = (KP +K!s +s)N (Vv-4)

T

storage units. Using Stirling's bounds on K!, this is
O(RN).

M-way Tree Forms: Fixed Node Sizes. M-way trees with

fixed node sizes include Quadtrees (Ref 5), which have K=2
keys, and B-trees (Ref 10:499), which can have any number of
keys. Generally, the space requirements of these forms are
optimized by point balancing the trees, but here region
balanced trees are also considered, since they are similar
to the ADAM map structure. Each node has 2K pointers to

represent K dimensional data and the key information to

97

ST SR TR I T P UL W AP e CHPR S AT S DS DS X O W 1 . " Y

. select the proper pointers, forcing the node size to be

= 2K -
Sy = 2 Sp +KP +S; (V-5)

For the point balanced m-way tree, N nodes are required,

giving a space requirement of

= K -
Sp = N(2" S, + KP + S§;) (V-6)

which is 0(2XN + NkP).

If the m-way tree is region-balanced, the number of
levels is fixed at some value L. The number of nodes
required is found by finding how many are needed to
represent all the data points. The number of nodes at level

i is given by

o n, = 25t 1 (vV-7)

where the root node is level i=l. Therefore, the number of

levels, L, which may be required is given by the integer

value of i which satisfies

or
25"l > N> (250 (V-9)
Solving for L yields

log(N+l) -Klog2 < L < log(N+l) -Klog2 +1
- (V-10)

An estimate for L can be obtained by letting the base be 2K,

98

........

log(N+1l) -1 < L < log(N+1) (v-11)

The number of nodes required for L levels is given by

L
N = }E:(zx)i-l (V-12)

i=1
(2KyL_y
= — (V-13)
(2K-1)
and, therefore, the space required is given by

" 2Kyl

S, = 27(S, +KP +§,,) ———— (Vv-14)

T P V' (2K1)

Assuming that Sp and Sy are each one storage unit, then the

space requirement is given by

(2Ky1log (N+1)_;
Sp = = (2Ks +kp +s) (V-15)
(2X-1)
=-———§—-—— (2Ks +KP +s8) (V-16)
(2K-1)

The distribution of the N data points about the region
dictate the number of nodes, and thus the total space
required. If uniformly dispersed over the region, the

maximum space required by N points is

s, = ———g——— (2Ks +KP +3) (V-17)
(2K-1)

99

......................................

- v W e e T e v W

integer words for the "spread” portions of the tree which

have all the branching to separate the nodes. This uses up

L, of the L levels, where L, is the integer found from

L, -1 < log N < Ly (v-18)

The rest of the levels, L-Ll, have N nodes at each level,

giving
s, = (L-Ll)N(ZKs +KP +8) (V-19)

storage units. The maximum number of storage units required

for N data points in a region balanced tree is at most

N
(2K-1)

+(L-L1)N(2Ks + KP +8) (V-21)

integer words, where L, is the largest integer such that L,
-1 > log N , and K is the number of keys.

The m-way tree with fixed node size storage requirement
is then 0(LN2K + LNKP), worst case,

M-way Tree Forms: Variable Node Sizes. The m-way

trees with variable node sizes include region balanced K-D
trees, CARTAM, and ADAM. Each of these forms uses a
collection of smaller nodes to emulate a single variable
sized m-way tree node. For the m-way tree node size
calculations, there are some simplifications. The three
implementations each form major tree structure m-way nodes

of varying sizes.

100

For the region balanced K-D trees, the m-way node size

varies from a minimum of

SKMIN = KSyn (Vv-22)

where K is the number of keys and SKN is the size of a K-D

tree node, to

= (2K- -
SKMAX = (2 l)SKN (v-23)

When there is only one pointer out of the m-way node, the
node size is SKMIN because all K key decision levels must be

represented in the node. When the node is full, S is

KMAX
the resulting m-way node size. SKN is two pointers, and the

key may be explicit in the node's location, thus
S¢n = ZSP (v-24)

However, the key precision is P = L. Therefore, the K-D

tree space requirements become

= —N (2K -
Srmax = X1 (27-1)8, +(L=L; INKS
(V-25)
= NS (1 +K(L-L;)) (V-26)
= 2NS;(1 +K(L-L;)) (V-27)

This space requirement is linear in N, however, the maximum
value is on the order of the product Of N, L, and K, or

O(KNL).

For CARTAM, each m-way tree node consists of a linear

101

linked list of between 1 and 2X CARTAM nodes. The CARTAM
nodes contain 2 pointers, K center values, and K delta
values. The center values and delta values contain the key
precision, and thus use P storage units each, and the
pointers use Sp space. This gives the CARTAM node size as
SCN = ZSP +2KP. When no branches exist at a level, the

nodes can be suppressed, giving the CARTAM space

requirements as

N __ K
s's (V-28)
2K_1 CN

w0
n

- N
1-(1/2%)

2(SP +KP) (v=-29)

This is O(NPK) space requirement.
ADAM packs the keys in each node to reduce the K keys

to one K-bit field, giving the ADAM node size as
SAN = 2SP +K (v-30)

ADAM cannot suppress non-branching levels as CARTAM does.
The m~way tree nodes format consists of from 1 to 2K apam

nodes, but the node size is reduced to

=N _ oK - -
Srmax = K] 278, * (L-L; NS, ¢ (Vv-31)

(—N

y X +(L-log (N+1))N) (2SP+K)
1-(1/2™)

(v-32)

= (38+K)(X
1-(1/2™)

+(L-1log(N+1))N)

(V=-33)

102

w2 N
Hwnunw

Table III
Space Requirements

Number of Dimensions (Associations)
Number of Levels in Data Structure
Number of Data Items in the Data Set
Number of Bits of Precision
Stirling's Base for the K! Bound

Data Set Type

Maximum Space Requirement
*

Linear Data Set O(KPN)
Multidimensional
Linear Ordered - O(RN)

M-way Tree K *
A-Fixed Node Size O(2"'N+NKP)
fVariéble Node Size *k

K=-D Tree O(LKN)
CARTAM O (KNP)

**' T X]
ADAM O(NK(1l+L+logN))

** PFor these, P = L.

* This is a fixed value, not just a maximum,

*** For L-1 < logN < L this is O(NK).

key precision, giving O(NK(1l+P-logN)).

Summary of Storage Requirements. The space

......................
...........

approximately log base 2K of N.

103

storage units. This is O(NK+LNK-NKlogN). For L = log N

this is O(NK), but L = P is neccessary to get the desired

requirements of the gi?en methods are summarized in Table
III. The storage complexity of ADAM can be less than those

of all the other techniques if the desired precision is

. - ., CRRA RIS I RO . B O R .
R N i O e T e O

ADD and DELETE Time Requirements

Introduction. To analyze the time required for ADD and

DELETE operations, the time to locate the data item position
must be considered. Where necessary, the single data item
find time is derived first, then the ADD and DELETE times
are calculated.

Linear Unordered Data Set. A linear search must be

performed to find a data item. However, no search is needed
to ADD a data item. It can be ADDed to the bottom of the
set in KP+s stores of one storage unit each, where store

time is Tg, giving

TA = (KP+S)TS (v-34)

C. which is O(KP) time.
To DELETE a data item, it must first be found via a

linear search. The maximum search time is given by
TfMAx = KPNTC (Vv-35)

where TC is the compare time for one storage unit. All the
keys of all N data items must be compared.
The DELETE time is then the time to find the data item

plus the time to store a null for each key, or

Ty = Tg+KPTg (V=-36)

104

PR S W S o S0y RN W P | A e B sttt Bl e e el e B e i - . EVa— P N VR WL AT PO o .

o~ R A

B~
4 “A-..u..

) p
Vi, ‘A' g

I3

v

..

which gives the maximum DELETE time as

TDMAX = KPNTC+KPTS (V-37)

TD!IF}{ is O(KPN).

Linear Ordered Data Set. Both ADD and DELETE first

require a search to find where the value lies in the data
set. Using the key sequence which is used for the ordering,
a binary search finds the correct location in a maximum time

of

Tewax = KPTGlogN (V-38)

£MIN = KPTC time.

Letting i be the location at which the data item is to

and a minimum of T

be inserted, then the ADD time is given by
TA = Tf+TM+(KP+s)TS (V-39)

where Ty is the move time required to move all the data
items from the ith to the Nth down one position to make room
to insert the new data item. TM varies from the time to

move N data items, to the time to move none, or

0 < T, < (KP+8)NTg (V-40)

Thus, the ADD time is

TAMAX = KPTclogN+(KP+s)NTS+(KP+s)TS (V-41)
= KPTclogN+(KP+s)(N+1)TS (V-42)
which is O(KPN).
105

...

The DELETE time consists of only the find time and the

store time for null keys, and is given by
Tpmax = KPTolOgN+KPT (V-43)

which is O(KPlogN).

Multidimensional Linear Ordered Data Sets. To ADD and

DELETE a data item using multidimensional linear ordered
data sets requires finding the data item in each of the K!

orderings. This requires a maximum search time of

TfMAX = K!KPTClogN (V-44)

followed by the ADD or DELETE operation.
The ADD operation requires moves in each of the K!

orderings which vary as in the single linear ordering

0 < Ty < (KP+8)NTg (V-45)

giving the total ADD time a maximum value of

T = K!(KPTclogN+(KP+s)NT

AMAX +TS)+(KP+s)TS

S
(V~-46)

which is O(KRPN).
The DELETE operation requires only storing null keys
and/or pointers. To store both null keys and pointers

requires

= K! (KPT logN+KPTg)+KPT (V-47)

TpmMax s S

maximum which is O(RPKlogN).

106

However, to store only null key values requires a

maximum time of
Tpwax = KPToLOgN+KPT (V-48)

or O(KPlogN) time.
This derivation assumes that only one ordering needs to be
searched to find the data item and its key values.

M-way Tree Forms: Fixed Node Sizes. To ADD and DELETE

within all m-way tree forms, the data item position in the
tree must first be located. After it is located, the ADD or
DELETE cperation may be performed.

In general, for m-way trees, there is a node search
time to find which branch to take. This node search time is
designated TFN'

To find a data item, a sequence of nodes must be
searched, one for each level in the tree. For point
balanced trees, the number of levels is given by L-1 <
log(N+1l), where L is the largest integer which satisfies.

For L levels, the general m-way tree find time is

TF = LKPTR (V-49)

For fixed node sizes, where the subtree pointers are ordered
and selected by index. TR includes the time to retrieve K
keys and hash to the proper pointer at each of the L levels.
To ADD data items requires finding the location and
adding the necessary pointers and nodes. The search will

leave the user at some level, L;, such that L,<L, and then

107

o orrrrroe o Dt Stec it Sute A JPan it P E ST i it R AN

to ADD will require adding a pointer, then rebalancing the

tree. The pointer is added in fixed time T_,, and the

Sl
balancing is done in time TB. The balance time will not be
further analyzed as it can be substantial, and complex in

large trees. The ADD time is given by

TA = LIKPTR+TS+TB (V-50)

This can be misleading if it is not realized that Ty can be
a function of K, P, N, and L. This formulation is not
easily compared to ADD times of other forms.

To DELETE data items can give a similar result to the

ADD operation,

TD = LKPTR+TS+TB (V-51)

but also is not easily compared to other forms.
Region-balanced m-way trees are somewhat easier to
analyze for comparison. No point balancing is needed after

ADD's and DELETE's, and L is fixed, giving an ADD time of
TA = LIKPTR+(L-L1)TS (V=-52)

The structure, must be created from the last match at level

Ll' to level L. The DELETE time is given by

T, = LKPTp+Tg (V-53)

M-way Tree Forms: Variabl= Node Sizes. For all m-way

trees, the time to find where to ADD or DELETE a data item

is given by

108

Tf = LTfN (V-54)

However, T is a function of m-way tree node size when the

£N

node size varies, so a more accurate measure of search time
is

L

Tf = Z Teni (Vv=-55)

i=1

The node search time, TfNi' can be estimated for the
different structures. For all the m-way trees, the addition
or removal of the data item is the only other operation to
perform in the ADD and DELETE operation sequence.

For region balanced K-D trees, the ADD time is
dependent on the search time at each m-way tree node TfNi'

the number of levels searched, Ll’ and the number of levels

added to ADD the data item, The node search time is

T = KT (V-56)

£Ni C

where Tc is the time for one compare. This gives the ADD

time for the K-D tree as

Ly

TA = ZE: KTC +(L-L1)(28TS+TG) (V=-57)
i=1

where ZSTS is the time to store 2 pointers, and the key is

implicit, requiring no time. TG is the time to get a free

109

; o node. This simplifies further, since there is only one path

per level, to
TA = L1KTC+(L-L1)(25TS+T

G) (v-58)

which is O(LK).
For the CARTAM structure, each m-way node requires

1<ni<2K CARTAM node compares, Each CARTAM node compare

TCN -
requires 2K key precision compares or

TCN = 2KPTC (V-59)
Fj and the ADD time is
Lif
t * — —-—
) TA = ni(ZKPTC) +(2KP+25)TS+TG (V-60)
i=1
Ly
= 2KPTC n; +2(KP+S)TS+TG (V-61)
i=1

This can vary from ni=l to ni=2K for all i, yielding

T = 2KPT

K -
AMAX L12 +2(KP+s8)TL+T (V-62)

o S °G

which is o(kp2KL).

ADAM requires 15n152K ADAM node compares. Each ADAM
node requires K compares, each of a single bit requiring TC
time. However, ADAM requires a repacking of the keys from K
keys to L level search keys adding (KP+LK)TB for packing and

unpacking bits. These give the ADD time as

110

ettt ol IR i R U I U S P UL U (AT WO GRF e § o St P SRR WL AA_J

. - - > - e LW R, LW
RN P AU A T Tt S GO OO A I CI e
P A R e L T

.
Yo

= K -
o, Tamax = L1K2 To+(KP+LK)Tp+(L-L)) ((28+K)Tg+Ty)

(V-63)

Jf which is O(LKZK).
= For DELETE times, the insert times for the added nodes

!! can be ignored and for K-D trees the result is
_ K
TD = LKTCZ +2sTS+TR (V-64)

where 2 pointers are stored and the removed portion is
returned to free storage. This is O(LK).

CARTAM DELETE time is given by
= K -
TDMAX = 2KPTCL2 +2PTS+TR (V-65)

which is o(kpL2K).

ADAM DELETE time for a single data item is given by

= K -
Tomax = LK2 To+(KP+LK)Tp+28Tg+Tp (V-66)

which is o(LK2X),

ADAM, however, has a region delete feature, where a
single DELETE can remove all data items within a previously
found region. The time requirements for this is the time
required to traverse all subtrees which contain any points
within the region. If an entire subtree is within the
region to be DELETE'd, the subtree is removed by storing
only 2 pointers, however, the entire subtree must then be

returned to free storage. This DELETE time for ND data

items can be estimated by

g amendat_ainanie sothaiettAtaiciiant DU R

- Tomunr = Tpomax*™MTr (V-67)

! which is depends on the ADAM FIND time, and the number of
FINDs which are performed.

Summary of ADD and DELETE Times. The ADD and DELETE

times for the various methods are summarized in Table IV.

To DELETE whole regions of data points in one operation in
all methods requires merely a more complex compare
operation, and thus a longer compare time. To DELETE an
entire region of n points does not take as much time as n
single data item deletions if the algorithms are adjusted
for region compares rather than single point values, as in
ADAM. Point retrieval can be based on the same concepts, by
using either single points or by using all points within a

region.

112

Table IV

ADD and DELETE Time Requirements

K = Number of Dimensions (Associations)
L = Number of Levels in Data Structure
N = Number of Data Items in the Data Set
P = Number of Bits of Precision
R = Stirling's Base for K! Bounds
Maximum ‘ Maximum
Data Set Type ADD Time DELETE Time
Linear Unordered Q(KP) ' - O(KPN)
Linear Ordered QO (KPN) ' O(KPlogN)
Multidimensional
Linear Ordered. O(RPN) . 0O(KPlogN)
M-way Trees
-Variable Node
Size .k *
K-D Tree O(KL) O(KL)_
CARTAM o(xkp2¥L) o(kp2XL)
* *
ADAM o(k2*L) o(k2fL)
* For these L = P.
113

'1 ll - .\ -!. L L) .L 3 e . '.1 . . A w > ~ - b 2. R WPy e A ' 3 o s

P

|

- f e " - . < P Y A
o B M B o Bon Nt at - PSP SR S P

FIND and RETRIEVE Time Requirements

Introduction. Generally FIND is part of both the

DELETE and RETRIEVE operations. However, in ADAM they can
be separated, and multiple FIND operations can be performed
before a single DELETE or RETRIEVE is done. This allows
building regions of data for RETRIEVE or DELETE operatons
which are the UNION of several simple FIND regions.
Alternate ways of performing this compound FIND, to be
followed by a RETRIEVE or DELETE operation, on other than

ADAM data sets, are as follows:

l. Perform multiple DELETE or RETRIEVE operations
to eventually cover the entire region; or

2. Perform a complex region compare, instead of
the normal interval compare, for each compare that

would otherwise be done.

The first method is easy and.places the burden of
irregularly shaped region handling on the user. The second
may require a fairly complex region description technique
and comparison algorithm. For this analysis, all region
retrievals will be rectangular regions consisting of a
single interval in each dimension. CARTAM uses a Cartesian
measure to retrieve circles or spheres of data, which are
not easy to analyze, so the CARTAM structure will be
analyzed for only rectangular regions. The FIND and
RETRIEVE operations will be considered as a single FIND

operation for all the data forms except ADAM.

114

- A

Linear Unordered Data Sets. To FIND a rectangular

region in K dimensions in a linear unordered data set
requires 2 compares on each key for each data item in the

set. This requires a FIND time of

TF = 2KPNTC+NFTR (V-68)

where NFTR is the retrieval time for the NF data items

found, requiring Tr retrieval time each. T, is then O(KPN).

F
Linear Ordered Data Sets. The ordering of a linear

ordered data set can be used only to reduce the N data items
to some number NlSN. To do this, the two extreme points of
the region, under the ordering of the data set, may be found
using a binary search. These extreme points then bound an
interval of Nl data items, which are not ordered properly
for further single key-sequence searches, thus must be

linearly searched. This generates

TF 2KPlogN Tc+2KPNlTC+NFTR (V-69)

2KPT . (logN +N;)+NpTp (V-70)

which is 0(KP109N+KPN1). The relative sizes of logN and N;
determine which dominates the expression. N1 can vary from
O(N), for retrievals of most of the original data set, to
0(1l), when only a small fixed number of data points are

retrieved. The maximum time is

Temax = O(KPlogN +KPN) (V=-71)

= O(KPN) (Vv-72)

115

TR T s
LT e, . W AR

P

for the linear ordered data set.

Multidimensional Linear Ordered Data Set. For multiple

. Ve e Ty

o et
R DR RN
O N PR

linear orderings, the search can be on one ordering, as in
the linear ordered data set, or it can be on more of the

orderings. Assuming K keys, K orderings will be used.

ki iR ACR]
S PR A]
PP (R
PP R T TR

First, the binary search time for the K orderings is
calculated. The K orderings use the binary search to locate

the interval, and each of the K intervals may require

further searching. Further searching may be replaced by an
intersection operation on these K interval sets of data
items. The K sets each have n, elements each, for

i=l,...,K. Since the sets are ordered using different key

sequences, the intersection set, of Nob data items, is
derived from sets containing n, and ny data items each, and
requires n_n, compares. To intersect all K sets, one can
perform a sequence of set intersections, each intersection
using a new set and the resulting set from the previous

intersection giving

K-1

i=1

where N, is the number of elements left after the (i-1)
intersection, and N;=n;. The N; values must form a
nonincreasing nonnegative sequence, such that
O<Ng_1%£...<N;<N. The extremes are N;=0 for all i=l,..., k,

and Ni=N for all i=1, ..., K. This gives

116

K-1

TIMAX = KPTC}E: n;jy N (Vv-74)
i=1

But, for Ni' i>1, nizNi and for Ni=N for all i=1l, ...,K,

ni=N for all i=1, ..., K. Thus,

K-1
T = KPT N2 (V-75)
IMAX c
i=1
= KPT,(K-1)N? (V-76)
= (K2—K)PN2TC (V=-77)

which is O(K2PN?).

To get the FIND time for a region, then
TF = (2KPTclogN)K+TI (V-78)

since only K of the K! orderings were used. This gives

2 2 2

T = 2K“PT logN+(K“-K)PN“T, (V-179)

FMAX

which is O(KZPNZ), for NF=N. However, if one retrieval
comes back with an empty interval, then no further compares
need be performed.

For the multiple linear ordered data set, the search

via a single ordering, starting with a binary search,

followed by a linear search of N, data items, will result in

Tp = 2KPT(logN+N;)+N.Tp (V-80)

117

- - . . o - . - - - . - - Pl - " " * - - . - 3 . .
PR e L N I e e PRI N T, T)
AR R PR Nl U W SO WOy VRV . S P U P S, "YU Y U RN O P WP WL AT T TS P) 2 2 ol

which is 0(KP109N+KPN1). This gives the same results as for
the linear ordered data set, TFMAX= O(KN), for the
multidimensional linear ordered data set.

M-way Tree Forms: Fixed Node Sizes. The general m-way

tree consists of levels of nodes. Each node is the root of
a subtree, and that subtree includes every data item within
a specific subregion. The subregion of each node at a
specific level has an empty intersection with the subregions
of each other node at that level. The pointers in a node
compose the branches of the subtree rooted at that node.

To find the subtrees of a node which lie within a
region, compares must be performed between the search region
and the region represented by each subtree present. This
requires 2k 2K compares, or 2K compares for each pointer.

The m-way tree node compare time, TNC' is

. = 2k2KpT

for a node of size 2K pointers. Each subtree compare

returns 3 cases as follows:

1. Subtree region inside search region,
2, Subtree region outside search region, and

3. Subtree region overlaps search region.

For case 1 and 3 the subtree needs to be traversed. For
case 1 the entire subtree can be retrieved without any
further compares, and for case 2 the subtree can be

eliminated without any further compares. The resulting time

118

N T

.................

of access on any given tree then depends on the number of
nodes which are on the border of the region, NB, and number

of nodes within the region, NW’

For the ith border node, i=1,..., N, the compare time

is TNCi and for the jth included node, j=1, ..., NW'

traversal time is TTNj‘ The tree FIND time for the

the

situation is

The node traversal time TTNj is fixed for 2K pointers,
assuming traversal over a null pointer takes as long as

traversal over a non-null pointer. This yields

= oK -
TTNj = 2 TT (V-83)
and
NB
= K -
TF = ji: TNCi +2 NWTT (v-84)
1=1

From this comes a worst case, with TNCi = 2K2KPTc and for
all Ng,

N = —N__ (V-85)

B K,

119

and N. = N. This gives

W
T = N, (2k2FpT) +2KN T (V-86)
FMAX B C W-T
N K
= 2KP r_+2KN 1 (V-87)
(1-(1/2%) ¢ WT

which is O(KPN) for the m-way tree with a fixed node size.

M-way Tree Forms: Variable Node Sizes. The variable

node size forms all have some number of nodes, n;., for each

m-way tree node with

0<n, <2 (V-88)

The K-D tree has K < n, < 2K-1 nodes per m-way tree
node, thus, the comparison time for a single m-way tree node

is given by

TNci = n; T, (Vv-89)
which varies from

Tyemax = (2°-1)Tg (V-90)
to

Tnemin = KTc (V-91)
Using n =(2K-1) and the value for T above, the FIND

MAX NCMAX

time is given by

Ng Ny
TF = TC Z ni +TTZ ni (V-92)
i=] i=]

s e e

which, for

N
N, = —N (V-93)
B 2K

and N_=N, gives

; N oK. X_)
Tevax = Tc -y (2X-1y+r N (2X-1) (V-94)
= NT_.+2KNT (V-95)
c T

which is O(NZK) for the K-D tree.
CARTAM trees have lgniszK nodes per m-way tree node,

and thus, TNC varies from

K
TNCMAX 2KP2 Tc (V-96)

to

TNCMIN = 2KPTC (v=-97)

These equations give the FIND time maximum as

N, = —N___ (V-98)

B 2K
and N_=N, giving

= 2KPT +TTN2K (V-99)

T [\ S,
FMAX CK_;

N

K
—_———— 4T 2N (v=100)
C 1-q1/25)

= 2KPT T

which is 0(NKP+N2K) for the CARTAM tree structure.

ADAM trees are similar to CARTAM for the RETRIEVE, but,

121

Py
P iy
PRAIRY D R PRI

| og gl Y
’c"f .7

0 i, TN
; N et
LR o

TN
&
-
-

=

ADAM nodes contain only the K bits for its keys, rather than
the 2K keys of P bits each used by CARTAM. ADAM uses these K

bits as its key field in each ADAM node. This gives

= g2K -
Tucmax = K2 Tg (v-101)

and a total RETRIEVE time of

N +1_2KN (V=102)

T = K" ———————
1-(1/2%) T

FRMAX C
which is 0(KN+2KN), or O(2KN). However, ADAM has a
different value for its FIND function.
For the FIND operation, one need only traverse subtrees
which consist of the NB nodes which define the borders of

the search region. This gives ADAM the FIND time of

Ng
Tp = j{: Tnei (Vv-103)
i=1
Np
= KT, N; (V-104)
i=1
But, 1 < ni < 2K, thus, for
.y)
N, = — 7-105)
B K,
then
Tomax = KTC————Jij?—- (V-106)
1-(1/2™)

122

A M o F. by . B - MY VY S o PPV VI NP Y b 3 ol

I “aadiien g e Aaah Hhesht Sl et st Bl

;é; - which is O(KN) for ADAM using the FIND operation only.

TN ADAM can perform multiple FIND operations in less time
than multiple RETRIEVE operations. To retrieve complex
regions, multiple FIND operations followed by a single
RETRIEVE can be faster than multiple RETRIEVE operations.

Summary of FIND and RETRIEVE Times. The FIND and

gf RETRIEVE operation times are summarized in Table V. All the
h FIND operations are limited by compares that can be done
' with rectangular or convex regions except ADAM which can

utilize successive FIND operations to define a complex,

convex shaped region with a concave surface, disjoint
subregions, or any other describable region form in a single

RETRIEVE.

123

G IPE TP R P U TP AT UL W U R SO L W W O R W PRI P e o g P P l

"-

Table V

FIND and RETRIEVE Time Requirements

vz R
wnn

Numbe; of Dimensions (Associations)
Number of Data Items in the Data Set
Number of Bits of Precision

Data Set Type

Non-primary Key Search

Maximum Time

Linear Unordered O (KPN)
Linear Oordered O(KPN)
Multidimensional
Linear QOrdered O(KPN)
M-way Tree
~-Fixed Node Size O(KPN)
-Variable Node Size K
K-D Tree 0(2"'N)
CARTAM 0 (NKP+25N)
ADAM FIND O(KN)
RETRIEVE 02Xy

124

EYIPU ST WU ST W s

Table VI

Performance Ranking of Techniques

Data Set Type Space ADD DELETE FIND
I.inear Unordered 1-5 1,2 6 2-4
Linear Ordered 1-5 5 2,3 2-4
_ . Multidimensional =
ﬂ- Linear Ordered 6 6 - 2,3 2-4
g M-way Trees
o -Variable Node
N Size
o K-D Tree 1-5 1,2 1 5,6
& CARTAM 1-5 4 5 5,6
- *
- ADAM 1-5 3 4 1

* ADAM retrieves an associative data set, while all the
others retrieve sequential data sets. Retrieving a
sequential data set, ADAM is comparable to K-D trees.

ADAM Performance Optimization

Table VI summarizes the relative performance of the
different methods which currently are used in associative
access applications, and ADAM. By selecting ranges of

values for the precision, P; the number of levels in the

tree, L; the number of dimensions, K; and the number of

retrieval regions, M; all relative to the other parameters,
ADAM can be shown to have a performance exceeding all other
methods in most operation. These ranges can be found for

large values of N, the number of data items.

These parameter ranges can be set by checking each

125

L 4

R - e - A e & A A A B M BB e Aot A Mot Sa .- m o m W

4 O
Ol P A AL A,
‘:'.'.'.".".".‘.'. A

£

ARV I SOUNE

DR G i S e s S et P St et A A N

W e TR T T TR T e e e P i . -

category of analysis, space, ADD time, DELETE time, and
FIND/RETRIEVE time.

Space. For L = log N ADAM uses the least space. This
is because ADAM takes advanatage of redundant significant
lists in the values. For K and P such 2K > Kkp the m-way
tree with fixed node size is worse than linear data sets
(see Table III), but for 2 < KP it is tied with them.

For all the region-balanced m-way tree forms with
variable node size the order of space requirement is the
same as for the linear data set. However, for L = log N
ADAM is reduced to O(NK) and is more space efficient than
any of the other techniques.

ADD Time. ADAM came in third for ADD time. The 2K
compares possible at each level make ADAM worse than a
linear unordered or the K-D tree (see Table 1V), but for

2K < N ADAM is still better than linear ordered or CARTAM.

DELETE Time. Here ADAM came in fourth. The single

data item search time with 2K compares at each level made
the difference again. However, if 2K is less than log N
then ADAM can be in second place (see Table IV), behind only
the K-D trees. 1If ADAM is called upon to delete a number of
regions, it can delete them all in a single DELETE
operation, by applying multiple, faster, FIND operations to
define the regions to DELETE first, then deleting them all
in one operation.

FIND and RETRIEVE Time. The forte of the ADaM

technique is its FIND operation. The ADAM FIND operation

126

DS WP S N |

allows irregularly shaped regions to be easily defined by
multiple rectangular retrieval regions, and through the use

of multiple FIND operations, defines the multiple rectangles

S’-'
L

3
v
i
Iy

O
W
I

.t
v

as a single region. This region can then be deleted or
retrieved in a single operation. For the purpose of this
project, CARTAM was analyzed for rectangular region
retrievals, however it actually uses circular or spherical
regions. Since multiple circular and spherical regions
don't efficiently cover a region without overlap,
rectangular regions were used. The multiple FIND operations
of the ADAM technique, followed by a single RETRIEVE or
DELETE, replace the multiple FINDs or DELETEs required by
each of the other techniques.

Each of the methods could be implemented to use other
than rectangular search regions, however this would have to
be a much less generalized implementation than is defined

for this project.

5 The ADAM, FIND operation retrieves an associative data

set, and is the best performer here. One may argue that P

Ao

0 A SDARA

bits of precision are one compare, giving O(KN) in the

linear methods, but examples to the contrary are 32-bit

Y

values on an eight-bit machine, or 512 digit numbers on any

modern machine. Likewise, for small values of K, ADAM can

Ak A2 bl

perform one compare for all K fields at each node, giving
C(N) performanace, however, for large enough values of K,

multiple compares may be needed.

ol 9 HOOAGATAC

For actual comparison of ADAM to the other methods a

127

T T—————m——m———.——~

retrieval of sequential data set may be a good example. For
a region retrieval, where the region is composed of M
rectangular regions, the other methods all require
multiplying the retrieval time for the method by M.

However, for ADAM it becomes

r'_:'

o T, = M O(KN) + 0(2°N) (V-107)
” = oMk + 2%N) (Vv-108)
- = o(N(MK +25)) (v-109)

for MK + 2K < MKP ADAM is still more efficient for the
retrieval of a sequential data set.
Overall. To get the best "worst case" performance from

'!; ADAM, specific parameters must be considered, i.e.

Space, p =L = log N

ADD time, 2K < N

DELETE time, 2K < log N

: K
Sequential RETRIEVE time, M > —12(-

E These restrictions put ADAM first in space requirements

and sequential data set time requirements, and second only

to K-D trees in ADD and DELETE time requirements.

Run Time Performance Analysis

Project time constraints prevented the installation of
timing measurement instrumentation into the ADAMTEST program

package. The package could have contained start time and

128

Bt e AP AP N G N R I PP TP AP VIR S W) PN S S) -~ JRSTHPES W L L LI W S a - . Py) j_J

........
.....

. “-. e .;‘) .

— i Jhie nad e Al b S gy Mok Bt Sabe 4 - - At R R M)
Ml Bt e I i S Ve S i M e YW - e . T - ST T

P U L et T T e T e T T e el s Y e

stop time checkpoints, and allowed all operations to be
timed after their initiation. These start and stop time
values could then have been compared to a comparable set of
operations using some of the other techniques. Each
technique would have been implemented with a similar top
level interface such as ADAMTEST. Allowances also should be
made for multiﬁle operations such as a series of data ADDs,
DELETEs, and RETRIEVEs. These operations could then have
been timed and compared in an actual working environment,
but the environment would be have been standardized enough
to eliminate differences caused by different implementation
techniques.

The suggested techniques to implement for comparison
are the linear ordered data set and the K-D tree data set.
The linear ordered data set is the commonly used "milestone"
for comparison, and the K-D tree is the most recently
acclaimed associative access technique. Using real time
test runs on these techniques could have given a realistic

way to validate the results of the theoretical analysis.

Analysis Summary

The theoretical analysis of the different techniques
for performing associative access to data gives a clear view
of some of the problems with those methods. Each technique
has advantages and its disadvantages, and only a technique
which has been picked for a specific application can be
guaranteed to be a good performer. ADAM performs well when

applied to a particular combination of problems present in

129

very large databases. ADAM especially appears to be well
suited to the case where the keys are very long, although
more than just a few keys can seriously degrade its
performance.

Much more analysis is needed in the area of irregularly
shaped or disjoint region retrieval. Also, some run time
analysis is needed. Many possibilities for application
exist, and each application needs a comparison analysis to

choose among these techniques.

130

L MR Y T PR NP LI - ~ o 2 LN PR T Y a

VI Results

Introduction

ADAM models homogeneous real world data associations.
This chapter covers the model characteristics as described
from Chapter II and III. The implementation code
characteristics are then mentioned, as well as the data flow
diagrams in Appendix B, the Warnier-Orr data structure
charts in Appendix C, and the complete ADAM program package
source listing in Appendix D. Theoretical performance of
the model implementation, from the analysis in Chapter V is
then discussed. Finally, the functional tests performed on
ADAM are discussed, with references to the test run listings

in Appendix E.

Data Model Characteristics

The ADAM data model is derived in Chapter II, and
refined in Chapter III. The model is restricted to data
representable as having K homogeneous associations, where
1<K. To represent an association in the ADAM model, the
associatiton must be mapped to numerical values in the half
open interval [0,1). The user then determines the data
resolution desired, and sets the level number to the number
of bits required for that resolution. Once the data is
stored in the ADAM association model, the data can be
retrieved on any combination of association value, or key,

intervals.

To retrieve an irregularly shaped region the user

131

merely defines multiple rectangular regions to approximate
the region shape, then retrieves the entire region in one
RETRIEVE operation. Region definitions can be made
independent of a single dimension, or association, by
specifying the range for that dimension as (0,1].

The ADAM data model allows the definition and retrieval
of multiple data items by region. The regions can be any
union of rectangular retrieval regions, thus allowing
disjoint and irregularly shaped retrieval regions. Chapter
III and IV give the design and describe the implementation.

The code is dicussed next.

Code Characteristics

The more than 1600 lines of code in the ADAM program
package are highly structured. Following the requirements
set forth in Chapter II for quality assurance, ADAM was
designed and implemented in a generally top-down fashion.
Some anticipated low-level functions are exceptions to the
top-down implementation. This structure is shown by the
data flow diagrams of Appendix B. Strict modularity was
enforced, and is discussed further in Chapter IV in the
section "Program Modules". The needed data structures were
defined for clarity using the Warnier-Orr data structure
diagrams in Appendix C. The full source code is given in
Appendix D.

Machine dependent and language dependent features were
avoided. Though Pascal was the language used, recursive

procedure calls, pointer variables, and "hidden storage"

132

ik A PR TR WO G S . T VOOV R Yoy N D e -

PR

management procedures were avoided to allow easy translation
of the programs to FORTRAN or other medium to low order
languages.

The implementation was designed for easy functional
testing and algorithm debugging. For this reason, the total
ADAM map buffer size was restricted to 50 nodes. This
allows about 10 data items in a 6 level structure. The
implementation also limits the number of dimensions to
1<K<10, the number of regions to 0<R<8, and the number of
levels to 3<L<16. For general applications these limits may
be easily adjusted.

All user inputs are tested to assure they are within
the legal limits. Illegal inputs are either ignored, with

the prompt repeated, or used as a signal to abort a portion

of an operation. The checking and "HELP" command list
combine to make the package a useful training aid for
‘I teaching the use and interpretation of the ADAM model.
- Although the program package does not contain

Sj instrumentation for evaluating performance times, The
performance times were estimated and compared to other

access techniques.

Theoretical Performance

24 In Chapter VvV, different techniques for associative data
retrieval are analyzed for storage space, ADD time, DELETE
»ﬁ time, and FIND time requirements. ADAM was shown to be the
most space efficient of the methods if the number of levels

is chosen properly. ADAM ADD and DELETE times were good,

133

»»»»»»»

T At TN e <, T . . . P . " .
Ba PP T I VAL SR N SR A SR GO T Wiy W U SO WL WL U o & oo i >y s At

v
]

P AR

<

but not the best, and ADAM's FIND time was outstanding. The
drawback is that the ADAM FIND retrieves an associative data
set which must be translated to a sequential data set for
use. However, this translation is done by a RETRIEVE
operation which is comparable in speed to the FIND
operations of the best of the other access techniques.

The theoretical analysis makes ADAM appear extremely
fast and storage efficient for large amounts of data.
However, due to time constraints, timing instrumentation and
alternate access techniques were not implemented for
comparison. The code, however, was written for ease of
maintenance and upgrade, so instrumentation could be added.
The program package is interactive, and includes a DEBUG

package which allows complete functional testing.

Functional Tests

To debug and maintain the software package, a DEBUG
library was included in the ADAM package. The DEBUG
operations allow a formatted dump of the ADAM map nodes.
Using the DEBUG features, a complete functional test
sequence is given in Appendix E. The operations ACREATE,
AADD, ARETRIEVE, AFIND, and ADELETE were each tested. as
the map structure was modified it was dumped to print to

allow validation of all the map node's contents.

Summary
Theoretically, the ADAM package should exhibit very

high performance quality. It is the most space-efficient of

134

...

e the techniques analyzed in Chapter V, and it has the

: shortest FIND time. Functionally it works exactly as
specified in Chapter III. However, no time performance
comparisons have been made.

The software packages use software engineering
practices throughout to help guarantee quality as required
in Chapter II. The 1600 plus lines of code are modular,
well-commented, and otherwise fully documented in this
thesis. They are also written for human interface,
including input testing, meaningful prompts, and "HELP"
displays.

The data representation and access may be unfamiliar to
new users, and thus, the software package generated can
serve as an introductory learning tool, allowing the user to
later apply the ADAM algorithm set to specific applications.
ADAM is a revolutionary concept for representing and
accessing data.

The ADAM concept is a valid solution to the secondary

key access problem,

135

VII Conclusions and Recommendations

Conclusions

ADAM appears to be the basis for a new approach to data
access. It consists of good concepts from several other
techniques, combined in a new data representation. The data
representation and its associated algorithm set is
incorporated into a high quality software package. The
result is a versatile solution to the multikey retrieval
problem,

The ADAM map derives its overall structure from CARTAM,
but changes the tree structure's key form. The result is a
new data representation. The ADAM algorithm set is defined
to "hide" the actual implementation from the user. The
resulting associative access method gives both space
efficient data storage, and rapid data retrieval.

The ADAM software routine package was generated using
the highest quality software engineering techniques. These
include rigid top down structure, modularity, and quality
documentation. These combine to make the package easily
understood and maintained, as well as making the package
easy to use for varied applications.

The ADAM package gives a quality solution to the
multikey access problem. The result gives easy access to
data via data item key match queries, key range queries,
and, something not common in current literature,

multidimensional key region queries.

136

ADAM has the potential for widespread use in database
access, computer graphics, and pattern recognition. However
each of these areas of possible application need researched

further.

Recommendations

The ADAM package needs further analysis. Some of the
areas needing further investigation include ways to make it
handle large volumes of data and multiple simultaneous users

by implementing

- ADAM map checkpoint and restore operations,
- Virtual index access to the ADAM map buffer, and

- Parasitic map retrieval operations.

These are necessary for large database applications. Also,
a generalized region compare operation should be
investigated for applications in pattern recognition.

ADAM requires further analysis relating performance to
data set parameter values such as number of attributes per
data item, bits of precision per attribute, and data items
per data set. Also ADAM's sensitivity to data point
distribution patterns within the data region should be
investigated. Parameter combinations and point distribution
patterns which easily lend themselves to the ADAM structure
should be analyzed in depth. Specific criteria should be
established for when and where an ADAM technique should be
applied rather than one of the other available access

techniques. Analysis should also include actual run time

137

................

PRSI S AN WP . WL IR PR AT S S . SRR W A TPUL- LS S Y

comparisons,
Some capabilities should be added to the basic ADAM
algorithm set, along with the necessary map modifications.

These are as follows:

-Parasitic Map access
-Generalized region compare
-Disk save/restore for ADAM maps

-Virtual map buffer pointers and indexing

Parasitic maps should be implelmented for a multiuser
environment. These should be analyzed for performance,
maintainance or database integrity, and speed of access.

Before ADAM maps can be made very large, disk
save/restore routines should be implemented to checkpoint
and restore the maps. Also, for limited memory machines a
form of virtual indexes to access data address spaces
exceeding the user's computer memory size should be
considered.

The generalized region compare is a pattern recognition
feature of ADAM. The user predefines region "categories" in
the database, then the ADAM map can be accessed via a single
data item, returning a region indicator. This would allow a
user to have a "find category" query for data points. A
fast query of this sort is a new approach to the decision

functions discussed in Nilsson's Learning Machines (Ref.

22),

The availability of rapid access to variously shaped

138

regions using ADAM, makes ADAM a candidate for graphic scene
generation from 3-dimensional "point" models. This
capability of ADAM should be investigated further for

application in projects such as aircraft cockpit simulators,

robot environment modelling, and design automation.

139

PR DAL RS 0. SR PP DAL APa & NP AP S U SNy G S G Y WA DN DT WA WS- W P WS, W TP S o

L el aeats sintc da ahnt e aRie SR A A A O L A LA AN A A

BIBLIOGRAPHY

Aho, A. V., J. E. Hopcraft, and J. D. Ullman. The
Design and Analysis of Computer Algorithms. Reading,
Massachusetts: Addison-Wesley Publishing Co. 1974.

Baer, J. Computer Systems Architecture. Rockville,
Maryland: Computer Science Press, Inc., 1980.

Bentley, J. L. "Multidimensional Binary Search Trees
Used for Associative Searching,” Communications of the
ACM 18, (September 1975).

----- *Multidimensional Divide and Conquer."
Communications of the ACM: 214-229 (Apr 1980).

Bentley, J. L. and R. A. Finkel. "Quad Trees: A Data
Structure for Retrieval on Composite Keys," Acta
Informatica 4: 1-9 (1974).

Bentley, J. L. and J. H. Friedman. "Data Structures for
Range Searching,"™ ACM Computing Surveys, ll: 397-409
({December 1979).

Chistofides, N. Graph Theory: An Algorithmic Approach.
New York, New York: Academic Press, 1975,

Comfort, D. and W. Erickson. Relational Information
Management System (RIM). Computer program source
listiry. Seattle, Washington: Boeing Commercial
Airplane Co., January 1981.

Date, C. J. An Introduction to Database Systems. Third

Ed., Reading, Massachussetts: Addison-Wesley Publishing
Co. 1981,

Horowitz, E. and S. Sahni. Fundamentals of Data
Structures. Potomac, Maryland: Computer Science Press
Inc. 1979.

Hunter, G. M. and K. Steiglitz. "Operations on Images
Using Quadtrees," IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1: 145-153 (January 1979).

----- "Linear Transformations of Pictures Represented by
Quadtrees," Computer Graphics and Image Processing, 10:
289-296 (1979).

Ichikawa, T., Y. Tajima, and M. Yamamura. "Retrieval of
Image Features in Terms of Content-Addressing of
Hierarchically Structured Image Data," Paper presented
at the IEEE Computer Society Workshop on Picture Data

140

P e R R S S PR A AT SPE R IV NN 7 P e v et PP SIS WA VRSP SPUE WK WS WK YPUE WU W SO WO S

S

Descriptions, 1980.

Jensen, K. and N. Wirth. PASCAL User's Manual and
Report. Second Ed., New York, New York:
Springer-Verlag 1975.

15. Knuth, D. E. The Art of Computer Programming Vol 1l:
Fundamental Algorithms. Reading, Massachusetts:

I. Addison-Wesley Publishing Co. 1968.
- l6., -~--——-- The Art of Computer Programming Vol 3: Sorting

and Searching. Reading, Massachusetts: Addison-Wesley
Publishing Co. 1973.

u 17. Lillie. Class notes from EE 688, Computer Architecture.
» School of Engineering, Air Force Institute of
. Technology, Wright-Patterson AFB, Ohio. 1981.

18. Madnick, S. E. and J. J. Donovan. Operating Systems.
New York, New York: Mc Graw-Hill Book Company, Inc.,

-! 1974.
19. Munro, J. Ian and Henra Sewanda. "Implicit Data

Structures for Fast Search and Update," Journal of
Computer and System Sciences, 21 (2). (October 1980).

'!) 20. Nakano, K. "Associatron- A Model of Associative Memory,"
IEEE Transactions on Systems, Man, and Cybernetics
SMC-2: 380-388 (July 1972).

21. NASI 14700. User Guide: Relational Information
Management (RIM). Seattle, Washington: Langley
Research Center National Aeronautics and Space
Administration, June 1981l.

22, Nilsson, N. J. Learning Machines. New York, New York:
McGraw-Hill Book Co. 1965.

23. Oppen, D. C. "Reasoning About Recursively Defined Data
Structures." Journal of the ACM (27): 403-411 (July
1980).

R F RSO - SR
P, T O .. - PR

24, Petersen, Steven V. CARTAM The Cartesian Access Method
for Data Structures with N-Dimensional Keys.
Headquarters, Strategic Air Command, Offutt Air Force
Base, Nebraska, Reprint of material for his PhD
dissertation at California Institute of Technology.

L2 gl ot a

25. Rutledge. Class notes from EE 686, Information
Structures. School of Engineering, Air Force Institute
of Technology, Wright-Patterson AFB, Ohio. 1982.

26, ----~ Class notes from EE 693, Software Engineering.
School of Engineering, Air Force Institute of

141

O .'.,".'.'_.‘_.‘, e . P

FRL IRy NP S PRSP N 1P D AP R TR SR B SR S S N S SR R SR S PGS S IS S GRSV WS Wi R W T IR AP DR P SOPNCIE U LW B S TIPS S . SV

T T ——— . . S intt i Bt AT I AN N A

L N I N

Technology, Wright-Patterson AFB, Ohio. 1981.

Rux, P. T., F. W. Weingarten, and F. H. Young. Serial
Associative Memories, Livermore, California:

University of California, Lawrence Radiation Laboratory,
December 13, 1966. (UCRL-70270).

Samet, H. "Region Representation: Quadtrees from
Boundary Codes," Communications of the ACM: 163-170.
(March 1980).

Seelandt, Karl G. "Computer Analysis and Recognition of
Phoneme Sounds in Connected Speech." Unpublished MS
thesis. School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio. December 1981.

Thurber, K. J., and L. D. Wald. "Associative and
Parallel Processors," ACM Computing Surveys 7, (December
1975).

Weiderhold, G. Database Design. New York, New York: Mc
Graw-Hill Book Company, Inc., 1974.

Wiener, N. Cybernetics: or Control and Communication in
the Animal and Machine. Cambridge, Massachusetts: M.

I. T. Press, 196l.

Winston, P. H. Artificial Intelligence. Reading,
Massachusetts: Addison-Wesley Publishing Co. 1977.

Wirth, N. Algorithms + Data Structures = Programs.
Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1976.

Woolridge, D. E. The Machinery of the Brain. New York,
New York: McGraw-Hill Book Company, Inc., 1963.

142

APPENDIX A
MULTIDIMENSIONAL DATA

STRUCTURES

143

i

e
RO WL &2 Wolt | N
B

LS I A G AP A S e S St Rt
N N L Y S R I

A. Multidimensional Data Structures

Introduction

This appendix presents some of the main data structures
which are currently used for multidimensional or associative
data access. First some classical problems in data
representation are discussed, then the recently acclaimed
associative data structures are compared to the less well
known CARTAM structure of Petersen's.

Petersen (Ref 24) has recently published a new method

of representing multidimensional d-ta in sparsely populated
regions. His method is based on an older popular method,
but the older method has drawbacks which keep its
performance below other more recent and radically different
structures (Ref 6). Revising the older method, Petersen
overcomes its major failings. The result is far superior to
the other techniques for storing and manipulation

multidimensional data.

Classic Data Structures

AR
)

Numerical Mappings. One dimensional data is linear.

If it has a smallest value and a finite number of larger

values, these values can be mapped directly into consecutive

computer memory addresses. As long as there are at least as

many addresses as data points, data can be linearly stored

in the computer memory. Two or higher dimension data must

be mapped into a linear form to be stored in a computer

memory. This is not difficult if the number of data points

144

is small enough, but the space occupied grows exponentially
with the number of dimensions mapped into the line. For
example, with 10 data divisions in each dimension a
three-dimensional space requires 1,000 memory addresses,
while a four-dimensional space requires 10,000 memory
addresses. The need for memory is explosive for higher
dimension spaces. As long as the memory region is filled
with useful data the numerical mapping is space efficient
and gives rapid access.

Non-numerical Mappings. Most applications of data

representation of high-dimensional data do not require every
point of a grid to be represented. 1In fact, often the
region can be less than ten percent filled. With this
assumption, only a small portion of the addresses in memory
would be used with the above defined mapping. To eliminate
the waste of unused memory and allow efficient access of
data without searching through unused data entries, logical
data structures called trees, grids, and linked lists are
used. The only data entries which are needed in these
structures are those entries which exist in the represented
region. Trees, grids, and linked lists are highly
structured, and thus useful for only specific types of data
access (Ref 15). Trees give rapid access, by value, to a
single element. Grids give rapid access to all data entries
"near-by" in value. Linked lists are used for data in

linear organization.

145

- - e - PEAZRGal A deAS i Re - Rt et R RAEL I S S

Problems Encountered., Trees, grids, and linked lists

(Ref 15) do not give flexible access . Each has its own
use, but each also has its limitations. None can serve the
tasks well supported by the others. To efficiently

implement all of the relevant operations on data a more

versatile structure is needed. Bentley (Ref 6) discusses a
number of structures and the strong and weak points of each.
E- The data structures Bentley discusses (Ref 6) have
substantial overhead in use of memory addresses and program
code. Additional memory addresess are needed to store

#i pointers to other regions within the data structure. This
i can add 10-20 percent overhead on storage, occasionally as

N much as 200-300 percent overhead. To traverse the

structure, programs must be able to follow these pointers,
thus the complexity of the programs is increased, and for

certain awkward operations the time required to perform the

operations is increased cver the same operations on a linear

representation (Ref 19).

Associative Data Structures

As currently applied, trees appear to be the most
efficient structures to use for multidimensional or
associative data access (Ref 6). Specialized tree forms
have been created to allow multidimensional data access.

The main forms are the quad tree, the K-D tree, and the data
structure used in CARTAM.

Quad Trees. Many current sources on pattern

recognition use a tree form called the quad tree to get the

l4o

. fat et e . - LY T R A oatatiat A A IR TN SONS TR DU W DN W % F.

.........................

N PR
RO O

g~ 24088

Upper Level DatJ

Current Level Dat{ Data

Pointers to Lower Level

Fig 20. Quadtree Node
(3 Dimensions, 2 Sub-regions Occupied)
’ flexible access derived from trees yet retain a two
‘ dimensional search capability (Ref 1l1l; 12; 19). The quad
tree is actually an m-way tree with a fixed node size (Ref
c 10:496). However, this form is not space efficient when
extended to more than two dimensions. The quad tree must
have a pointer at each node for each half of each dimension.
In two-dimensional space, a node divides its region into
four quadrants, hence the name quad tree, and the node must
have a pointer to each quadrant. If some of those qu#drants
are empty, the pointers must still exist to retain a
.sfandard node éize and node format as in Figure 20. If the
space were six-dimensional, there would have to be 64
pointers at each node, and the number of pointers doubles
for each added dimension. The quadtree solves most of the
problems of multidimensional access, but this wasted space,
i _ argues Bentley (Ref 6:407), makes the K-D tree better than

137 the quad tree.

147

3

S
ek

L T T S U N R .
R TG U 5. 0 S S U I G . U . YU I P i ISP Y DY i PP Ty o o

Upper Level 3rd Dim

1st Dim Data
- Current Level 2nd Dim Data | Data
N/
h 3rd Dim Data Data Data Dat

N

Pointers to Lower Level lst Dim

Fig 21. K-D Tree Levels
(3 Dimensions, 2 Sub-regions Occupied)

K-D Trees. The K-D tree is a binary tree where, for k
dimensions, every k-th node represents a division in the
same dimension at the next lower level in the structure.
Each tree node represents a border between two ranges of
data in a single dimension. In searching down a tree to
access data, a decision is made at each node to reject half
of the data, based on the value of a single dimension (see
Figure 21), and continue the search in the other half of the
data. This search is fine if every dimension is required
for the search. If any dimension is not used in the search,
then the choice to be made at the node representing that
dimension is irrelevant to the problem, and thus both
branches beneath the node must be searched. Bentley (Ref
6:404) defines these as K-D trees and claims they are the

best trees for any search, showing comparisons with several

148

......

ot e e SRR S D IS D . A= . PP W T P S TP Al Ul Sl VT S WP UG S SURR A, Y -

Upper Level Data

1

Current Level. . Data Data

l

Pointers to Lower Level

Fig 22. CARTAM Structure Levels
(3 Dimension, 2 Sub-regions Occupied)
other tree forms.
Another more serious problem with the K-D tree is that
the decision criteria for every dimension except the first,

at each level, must be duplicated for every cell at that

level and dimension. This is not significant for small

numbers of dimensions, but for six dimensions this means the

sixth dimension's decision criteria may have to be copied 32
times. “

CARTAM. Petersen (Ref 24:21-23) uses a version of the
quadtree to represent multidimensional data. He creates a
linked list of small cells which, together with their pérent
cell, make up the needed pointers of a single quadtree node
as in Figure 22, and the data areas of the subordinate
quadtree nodes. Being a linked list, only those cells which
are needed to point to subordinate regions need be present,
thus saving space where subordinate regions are not
oécupied.

The structure has the drawback of requiring a linear

149

o Te T T T e C . . " o . . R . . . R
o e e A e e s S e S e e St et e adnadnasdnmdinedassbomin P T P L

search of the linked list of subordinate cells to find those
cells which satisfy the search criteria. For six dimensions
this means only 64 elements possible per level, but for 10
dimensions this is 1024, doubling in size for each added
dimension.

Petersen does not optimize his data storage, and leaves
his structure with a larger data storage overhead than
needed, however his revised node structure can be expanded

to any number of dimensions.

Conclusions

Bentley (Ref 6:407) analyzed and rejected the quadtree,
but it is still common in current literature (Ref 11l; 12;
19). Petersen (Ref 24:21-23), by revising the quadtree
slightly, eliminated the very difficulties Bentley had used
to reject the quadtree. Petersen's structure, though
requiring some optimization of data storage, is a more space
efficient structure than the quad tree or K-D tree for
representing multidimensional data in sparsely populated

regions,

150

PSP PP P PSR S A P R SO AR R IR I IR Yhil Y Gl YW U T S I A ST AP S ¥ S Py Wy Py W

APPENDIX B
ADAM
DATA FLOW DIAGRAMS

(DFD)

151

PYIR PPE PSS UL Vel W SIS WO, RO TP P S R WS SO P W, A WA PR Y S S . P hIPGARTT W P W DAL T APl SRP U S G

2.0

Data Flow Diagram List

ADAM Routine Package
ACREATE
1.3 NEWBUFF
AADD
2.1 CRTLSK
2.11 BITPU
2.2 MAPSRCH
2.3 BUILDB
2.34 RETCELL
2.4 NODEINS
AFIND
3.3 AREGCOMP
3.4 AMAPTRAV
3.41 AMOVE
3.5 ARSET
ADELETE
4.2 ARSELECT
4,4 REMNODE

ARETRIEVE

152

Y

F ol ol 2
R
PR

v » ow EY
h S

er - ey
ot

0.0 ADAM Routine Package
K
Size s 1.0
Create
ADS Map
2.0
Add
Data Data
User Item Item *
RD
3.0
Region Find
Index Region ADS
4.0
Delete
Region User
SDS
5.0 -
Retrieve
Regicn
ADS-~ Associative Data Set
SDS-~ Sequential Data Set
RD--- Region Definition
Size~ Max Size of ADS
K=--- Number of Dimensions
ACREATE
AADD
AFIND
ADELETE
ARETRIEVE

Fig 23. DFD

of ADAM Algorithm Set

153

......

1.0 Create Map (ACREATE)

Directory
Contents

Node
Contents

T b ADAM Map Buffer
(& '* Lowest Level

1.3 NEWBUFF

g Mt ut B s e ~ ‘il
F . e - R AT N IR
A Wt M A] 0
- PR PR . rhet L
. / X

Fig 24. DFD of ACREATE

"-'v
8 LS.
.

- PTT—

154

PR TP S G Pearse

*

1.3 Format Empty Map (NEWBUFF)

. 1,.31%* \
Initialize
Node
ADS

1.32*
Create
Free
List

valid Size

Node .
Contents

1'- 34*

Store Null
) " List Tail

Lowest Level .

...........................

Fig 25. DFD of NEWBUFF

155

PP T S VA MU, VLI A A et ST S SPVIE SO SN JPSS. JPUE IPENP AR SRS S SO0 S AL -

2.0 Add Data Item (AADD)

2.1
Create
. LSK

Data Item

2.2
Search
Map for
Match

2.3
Build
New Branch

Match
Location
Branch
Location

2.4
Insert

. LSK = Level Search Key

CRTLSK
MAPSRCH
BUILDB
NODEINS

NN
« o o .o
oW -

Fig 26. DFD of AADD

156

2.1 Create Level Search Keys (CRTLSK).

Data Item

Bit Array

Transposed
Bit Array

LSK = Level Search Key
* towest Level

2.11 BITPU
2.13 BITPU (see 2.11)

Fig 27. DFD of CRTLSK

157

PPN R WA S U

B S N e ———

.................

2.11 Bit Pack/Unpack (BITPU)

MASK Array

Bit
Mask

Data value

Bit Array
>

Bit Array Data Value
— —
t‘ Pack/Unpack Flag
b N

Operation

* Lowest Level

Fig 28. DFD of BITPU

158

JPPRIC WY SPUR P e

3. D 2.2 Search Map for Match (MAPSRCH)

o ‘ Map Location Stack

Current
Map
Location

Map
Location

2,21*
Initialize
Location

LSK

2.22%

Compare
Node

KEY

Node
Contents

Move
Direction

2.23*
Move to
Next Node

ADAM Map

ADS Associative Data Set
LSK Level Search Key

Match Location

* Lowest Level

Fig 29. DFD of MAPSRCH

159

r'
»
0

Dt} PRy
q « s
l.l.' r.l-'-"-l-..-

i

2.3 Build New Branch (BUILDB)

ADAM Map

Node
Contents

Node

- 2.31
Get Next
Free
Node

Node
Location

Node
Location

2.33
Add Node
To

Branch

2.34
Return
Free
Node

ADS Associative Data Set
LSK Level Search Key

* Lowest Level

2.31 GETCELL

2.33 NODEINS
2.34 RETCELL

Revised

Contents

Branch

Location

Fig 30. DFD of BUILDB

160

...........

2.34 Return Free Node (RETCELL)
Node
Location
Node Contents
2.343*
Storage
Revised
Node
Contents
ADS Associative Data Set
* Lowest Level

" Pig 31. DFD of RETCELL

1€l

et

T A e e e e i m T m ' e a8 e L B s oot e e e s N et e ot

2.4 1Insert New Branch (NODEINS)

ADAM Map

New
Node
Contents

Directory Contents

Check
Position
Conditio

Insert Location

2.43*
Insert

Below
Parent

2,44*
Insert
Into

Level
ADS Associgtive Data Set

* Lowest Level

Fig 32, DFD of NODEINS

162

3.0 Find Region (AFIND)

- Se vt

R R IO
L et N
R L

cww
14 8

AT,

Map Position Stack

Region Index

N 3.1* Current
g: Initialize Map
: Position Position Position

3.2
Compare
' Region and
_RD___ Node Tracsg

3.3
Traverse
the
Map

Node
Results

3.4
Set

Region

Flags

!if——-i New Node

ADAM Map Contents

RD Region Definition
ADS Associative Data Set

* Lowest Level
3.2 . AREGCOMP

3.3 AMAPTRAV
3.4 ARSET

Node
Status

Fig 33. DFD of AFIND

163

.........

e

o e

3.2

* Lowest Level

Center
value

3.22*
Compare
One
Dimension

3.23%
Summarize
Dimension
Results

Compare Region and Node Trace (AREGCOMP)

Dimension

compare
Results

Node
Results

Fig

34.

DFD of AREGCOMP

164

3.3 Traverse the Map (AMAPTRAV)

0ld Map
Position

New Map Position

—»
—

Move Status

Move
Node Direction

Contents

Node
Results

* Lowest Level

3.31 AMOVE

Fig 35. DFD of AMAPTRAV

3.31 Move Through the Map (AMOVE).

* Lowest Level Node

Fig 36. DFD of AMOVE

166

PR NSRS S WG S

3.4 Set Region Flags

Region
Index

Node Results 3.42*

Location

* L,owest Level
** Calls BITPU (see 2.11)

Get **
Region Field

(ARSET)

(3

Field
Location

Node
Contents

Fig 37. DFD of ARSET

167

e N 8 "
emealnat sl

hY

PP P US SR

4.0 Delete Pegion (ADELETE)
Map Position Stack
ADS 4.1%* New current
Initialize Map Map
Position Position Position
Region
Index
Region
Flag
4.4
Remove
Node
4.5% Node
Check Results
for Unused
Node 4.6
Traverse
the Map
Node Revised
Contents Node Contents
ADAM Map
ADS Associative Data Set
* Lowest Level
4.2 ARSELECT
4.4 REMNODE
4.6 AMAPTRAV (see 3.3)

Fig 38. DFD of ADELETE

168

4.2 Get Region Flags (ARSELECT)

4,.21*
Check
Region
Index

Region

Node Contents 4,22*
Get **
Region .Field

Location

Field
Location

* JL,owest Level
** Calls BITPU (see 2.11)

Fig 39. DFD of ARSELECT

AY

169

o e

R A - . N e . T IEY
e, YD WAL TP P CA PP S PR ST YUY W | o~ A

PO P S SIS S SR I P U, LN WU

........

Node
contents

4.41%*
Remove
Child

Current Map
Position

* Lowest Level

 4.43 RETCELL (see 2.34)

4.4 Remove Node

(REMNODE)

Location

4.43
Return
Free
Cell Revised

Node

Fig 40.

At 2 i e m N lmit ol adaia' slio wial

PP -

DFD of REMNODE

170

TR PRI . P

O

5.0 Retrieve Region (ARETRIEVE)

Map Position Stack

ADS 5.1% New Current
Initialize Map Map
Position Position Position
Region
Index .
Region
Flag

Level Trace
Bits

Trace Stack

5.5* Node
Data Item Add4d Results
Traces Traces
to SDS
Node Revised
Contents Node Contents SDS
ADAM Map

SDS Sequential Data Set
ADS Associative Data Set

* Lowest Level

5.2 ARSELECT
5.6 AMAPTRAV (see 3.3)

Fig 41. DFD of ARETRIEVE

171
-

P
PP IR T Y N

APPENDIX C

LR I
ettt
3% %,

DATA STRUCTURE DIAGRAMS

AN
N]

172

*il

o

. -

CYPON G

Data Structure Diagram List

Associative Data Set (ADS)

ADAM Map

ADAM Buffer
Sequential Data Set (SDS)
Region Definition (RD)
Level Search Key Data Set (LSK)
Map Position Stack
Trace Stack

173

e a e e R TR IR TR

Simple vVariables Referenced

MAXNODES - Maximum ADAM map buffer size

MAXDIM ~ Maximum number of dimensions allowed

MAXREG - Maximum number of regions allowed

MAXDI - Maximum number of data items allowed in
a sequential data set

NDIV - Number of data item vectors returned in
a sequential data set

NUMDIM - Actual number of dimensions in a map

NUMLEV - Actual number of levels in a map

174

Associative Data Set (ADS)

ADAM Map {
(
.Directory <
\
(
" Node <
\

Directory (1 time)

Node (MAXNODES + 1 time)

Number of Dimensions (I) (1 time)

Number of Regions (I) (1 time)

Number of Nodes‘(s MAXNODES) (I)
(1 time)

Number of Levels (I) (1 time)

Sibling/Parent Pointer (I) (1 time)
Child/Data Pointer (I) (1 time)

Key Data Field (B) (MAXDIM times)
Region Flag Field (2B)

(MAXREG times)

(I) = integer variable

(B) = 1 bit field
(2B)= 2 bit field

Fig 42. ADAM Map Data Structure

175

R* RO

Alternate vView of ADS Buffer

Directory (1 time)

ADAM Buffer Node (MAXNODES + 1 times)

Directory { Integer word (4 times)

Node (Integer word (4 times)

Al

LA

. -
[N R, !

Py
PN

R

s

JELASRI,

>
L

4

LR
LRl
PR

P

T

PG

..........
.................

Fig 43. ADAM Map Buffer Data Structure

176

e r "t h e et at m " e aTat el A YA 2 PRI Y Sy PR

L
A
s

. H

ey
Y
1)

LSS
AR

TR

.
.

RN A 3 sl
oy Uy ‘

......................

Sequential Data Set (SDS)

Sequential Data Item Vector

- Data Set . (MAXDI times)
Data Item Vector Integer (MAXDIM + 1l times)

SbS Retrieval Data Structure

[Number of Data Item Vectors

. (NDIV, I) (1 time)

SDS ' Data Item Vector (NDIV times)
rData Item Value (I) (1 time)

Data Item Vector (Data Item Dimension Value (I)

(NUMDIM times)

e e T T
P W W, o) o o

Fig 44. Sequential Retrieval Data Structure

177

-

Region Definition (RD) Data Set

Low Value Array (1 time)

- RD _High value Array (1 time)

Low Value Array Dimension Low Value (i)

(NUMDIM times)

High value Array Dimension High Value (I)

(NUML™™ times)

Fig 45. Region Definition Data Structure

178

Level Search Key (LSK) Data Set

Level Search Level Search Key (I)

Key Vector (NUMLEV times)

Fig 46. Level Search Key Data Structure

Map Position Stack Data Set

Map Position Position

Stack (NUMLEV times)

Parent Pointer (I) (1 time)
Current Pointer (I) (1 time)
Position . Lastone roincer (I) (1 time)

Nextone Pointer (I) (1 time)

(L Region Index (I) (1 time)

Fig 47. Map Position Stack Data Structure

179

Trace Stack Data Set
Trace Stack Level Search key (NUMLEV Times)

Level Search Key Dimension Decision Bit (B)

(NUMDIM times)
Alternate View

Trace Stack ' Dimension Trace (I)

{NUMDIM times)

Fig 48. Trace Stack Data Structure

180

O - . . i PR WY P

| "AD-A124 674 ASSOCIATIVE DATA ACCESS METHOD C(ADAM)CUY AIR FORCE INST
OF TECH NRIGHT-PATTERSON ARFB OH SCHOOL OF ENGINEERING
J R HOLTEN DEC 82 RFIT/GCS/EE/82D-19
UNCLASSIFIED L F/G 972

"o
,1 ?
v -
ot y
b e - '
LY .
b - - .
_— -
.. —~ -‘t,
.., & .\
W N . - vl
[N lﬂ - .
AR d .
\ Y . 1
» - ,L
V.

TN AT TR AT T W e T
. AR S SCR e Rl

3
'
¢
i

: B EEEE
= EEEN

F]
EEFEFFTLIL

.-

{CROCOPY RESOLUTION TEST CHART

SRS T AT AT ST
' NATIONAL BUREAU OF STANDARDS-1963-A

=2
fle=
2 s

v “-:\-_-. .
AtaT e

.

»!
8 e N

v

LN

DAY
.
ALY

LN
AL AR AL | o s PRPR TR T RS T

Rt inst et e breed

.

Nt R

L W) CRVE S YN
A
LA R '_‘-q.4.‘,~‘,'\h“‘h“..u,L\..\

APPENDIX D

SOURCE LISTINGS

181

Listing Contents

ADAMTEST Library. . « « ¢« ¢ ¢ ¢ o« ¢« &
HELP:e o o o o o o o o o o o s o o o
ADAMCONTROL . ¢« « « o ¢ o o o o o @
INITIALIZE. .« « « o o o o o o o o o
Main BodY . « « « ¢ o o o o o o o &

AINTER Library. . « ¢« « o« o« ¢ o o o &
OUTBITS . & ¢ o « o o o o o o o o o
OUTVEC. . ¢ ¢ o o s o o o o o o o
INVAL o ¢ o o o s ¢ o o o o o o o o
OUTDIV. o o« ¢ o o o o o o o o s o @

INPDIV . L) . . L] [. [L] . .o . . . [

'i) ADEBUG Library. . « ¢« ¢ « o o o o o o
| PDEBUG. . « o« ¢ o ¢ o o o o o o o
PRTNODE . . ¢ ¢ ¢ ¢ o o s o o o &
OUTDIR. « + o o o o o o o o o o o
HELP., . « « o o ¢ o s o o o o o o
DUMPDAT . + o o o o ¢ o o o s o o
Main BodY . « « ¢ o o o o o o o

ALIBI Library L] L] . L4 LJ L] . .

L |

AADD (2.0). L] . [} L]

s D v

BUILDB (2.3): ¢ ¢ o o o ¢ o o o o
Main Body . « ¢« ¢ ¢ o « o o o o o
ACREATE (1.0) . ¢« & ¢ o ¢ o ¢ o o @
ALIB2 Library . « « « o ¢« o o o o o o

i ADELETE (4.0) » ¢ o o o o o « o o «

CLOLENOUARNE I Sathrats

182

B L I TP TN S e SR} Mo . -
- ‘-. _n‘ ‘-. ol q(.!4 - ‘.‘\"' ql-' "-n:n ~

-

j RN L R IN TR P
VS S PRV TS VPG VR VST VY O T

.........

. 184

. 186

. 187

. 189

. 190

. 191

. 192

. 193

. 194

. 195

. 196

. 197

. 198

. 199

. 200

. 201

. 202

. 203

. 204

. 206

. 207

. 208

. 209

. 210

. 212

(Y

NP W G]

.............................

. SIS - . A A AC N AN N e S SR e Mgt e S R A O
Tl a%e " el ats ‘et " T I SR . PR S I . P S

C]

o

A

o

REMNODE (4.4) . . ¢ & ¢ ¢ ¢ o o o o o o o o« o« o« » 213

Main BodY . o ¢ ¢ ¢ ¢ o o o o ¢ o o o o o s o o o 214

AFIND (3.0) . ¢ o ¢ ¢ ¢ o o o o s o s o o o « o« « o+ 216

AREGCOMP (3:2). ¢ « ¢ o o o o o o o o o o o o o o 217

ARSET (3.4) . ¢ ¢ ¢ ¢ o o o o o o o o o s o & o o 218

Main BodY « « « ¢ o o ¢ ¢ o o o o o o s o o o o o 219

ARETRIEVE (5.0) o ¢ o ¢ ¢ ¢ & ¢ s o o o s s « & &« o« 221

ALIB3 LiDrary . ¢ o o ¢ o ¢ o o o o o o o o o o o o » 223

ARSELECT (4.2). ¢ ¢ ¢ o ¢ o o o o o o « o s o o« o o 225

AMOVE (3.31). ¢ ¢ o ¢ o o o o o o s o s s s s o o o« 226

AMAPTRAV (3.3)c ¢ ¢ ¢ o ¢ o o o o o o o o o o s o« o 227

AUTIL Library . « o o o o o o o o o o o o o o o o o « 229

GETCELL .« ¢ ¢ o ¢ o ¢ o o o o o o o o o s o o« o o« « 230

G NEWBUFF (1l.3) . ¢« o ¢ o « o o o o o« o s o s o o« o« o 231

| RETCELL (2.3) & ¢ o « o o o o o o s o s o s s o o« o« 232

BITPU (2.11). ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o« « o o 233

CRTLSK (2.1). ¢ ¢ o« ¢ o ¢ &+ o o s o o o o o s o o« o 234

[NODEINS (2.4) &« v ¢ o o o o o o o o o o o o o o o« o 235
MAPSRCH (2.2) ¢ ¢ ¢ o o ¢ o o o o o s o o o o o« o o« 236

ga () indicate references to DFD number in Appendix B
r—
!

183

.................

T W’ B e A A N S A A T A R v,
R R e i A e o T P T P T et

W

O PROGRAM ADAMTEST;

R A (* THIS PROGRAM TESTS THE ADAM PROCEDURES *)

;. CONST

T MAXNODES = 50; (* SMALL BUFFER FOR NOW. *)

RS MAXDIM = 10; (* MAX NUMBER OF DIMENSIONS. *)

KA MAXBIT = 16; (* INTEGER LENGTH IN BITS. *)

(* MAXBIT SHOULD ALWAYS BE BIGGER THAN MAXDIM. *)
MAXDI = 100; (* MAX DATA ITEMS IN A RETRIEVAL. *)
MAXREG = 8; (* MAX NUMBER OF FLAGGED REGIONS. *)

. .
e -..“
'- a. - .

TYPE NODBCELL = RECORD
SPPTR,(DPIR : INTEGER ;
DATA:ARRAY (. 1..2 .) OF INTEGER;

END;
‘ NODEARRAY = ARRAY (. 0..MAXNODES .) OF NODECELL;
o MAPDIRECT = RECORD
P NUMDIM, NUMREG , NUMNODES , NUMLEV : INTEGER ;
END;
b ADAMMAP = RECORD
DIRECT:MAPDIRECT;

NODE :NODEARRAY ;

END;
PFILE = TEXT;
BITSET = ARRAY (. 1..MAXBIT .) OF BOOLEAN;
BITARRAY = ARRAY (. l..MAXBIT .) OF BITSET;
DIVEC = ARRAY (. 0..MAXBIT .) OF INTHGER;
PUFLAG = (PACK,UNPACK);
SCHRES = (NOTDONE, INSERT,MATCH) ;
REGDEF = RECORD

LOWVAL, HIGHVAL : DIVEC;

END;
SEQDS = ARRAY (. 0..MAXDI .) OF DIVEC;
C8ARAY = ARRAY (. 1..8 .) OF CHAR;

VAR MAP:ADAMMAP;
MASK :ARRAY (. l..MAXBIT .) OF INTEGER;

PRFILE:PFILE;
PRFLAG: (DISPLAY, PRINTER) ;
BITFLG, VECFLG : BOOLEAN ; (* DEBUG FLAGS. *)
(* THESE ARE THE INTERACTIVE SUPPORT ROUTINES. *)

PROCEDURE INVAL (PROMPT :C8ARAY ;VAR INDEX:INTEGER;
MIN,MAX: INTEGER) ; EXTERNAL;
(* USES PROMPT TO INPUT THE INDEX. PROMPT RECURS UNTIL
INPUT VALUE IS BETWEEN MIN AND MAX, *)

PROCEDURE INPDIV(PROMPT:C8ARAY ;VAR DATVEC:DIVEC;
NUMDIM: INTHGER) ; EXTERNAL;
(* USES PROMPT TO INPUT THE DATA ITEM VECTOR DATVEC,
WITH NUMDIM ENTRIES. *)

PROCEDURE OUTDIV(DATVEC :DIVEC ; NUMDIM: INTEGER ;VAR OFILE:PFILE);

184

.................

..............................

...................

EXTERNAL;
(* OUTPUTS THE DIVEC TO OFILE. ASSUMES THERE ARE NUMDIM
VALID ELEMENTS IN THE VECTOR. *)

(* THESE ARE THE HIGHEST LEVEL PROCEDURES
FOR MANIPULATING AN ADAM MAP. *)

PROCEDURE ARDD(VAR MAP:ADAMMAP; ITEM:DIVEC); EXTERNAL;
(* ADDS DATA POINTS TO THE MAP. USES INTERACTIVE DATA ENTRY. *)

PROCEDURE ACREATE(VAR MAP:ADAMMAP;SIZE,K,L:INTHGER); EXTERNAL;
(* CREATES AN EMPTY ADAM MAP IN THE M-NODE MAP BUFFER
AREA, SETTING UP THE DIRECTORY AND FREE STORAGE LIST. *)

PROCEDURE ADEBUG(VAR MAP:ADAMMAP); EXTERNAL;
(* ALLOWS SOME DEBUGGING AIDS TO BE ACTIVATED/DEACTIVATED
INTERACTIVELY, AND SOME DEBUGGING TOOLS TO BE USED. *)

PROCEDURE ADELETE (VAR MAP:ADAMMAP; INDEX: INTEGER); EXTERNAL;
(* DELETES ALL THE DATA POINTS WITHIN THE SPECIFIED
RETRIEVAL REGION. *)

PROCEDURE AFIND(VAR MAP:ADAMMAP; INDEX : INTEGER ; RD :REGDEF) ;
EXTERNAL;
(* DEFINES A REGION WITHIN THE MAP FOR ALL RETRIEVED
DATA POINTS. *)

PROCEDURE ARETRIEVE (VAR MAP:ADAMMAP ; INDEX : INTEGER ; SDS : SEQDS) ;
EXTERNAL;
(* TRANSLATES THE ADAM MAP DATA POINT ORGANIZATION INTO A
SBEQUENTIAL ORGANIZATION FOR SEQUENTIAL PROCESSING. *)

185

| A e At T RISAENSARINER DL I 1
IR D SR PR U - - astm ae o o -
" |
L~ |
a !
i
. e i
",

V.

-

oo
w”
oy
T
ISCY
i
AN
prc
[
3
[0k
o

(* INTERACTIVE TOP LEVEL ROUTINES. *)

. l' l’-
botq o

PROCEDURE HELP;
(* PRINTS OUT THE LEGAL COMMANDS AT THE TOP LEVEL
AND GIVES THEIR FUNCTIONS. *)

BEGIN
WRITELN(' ADD = - = - - - ADD DATA TO THE MAP.');
WRITELN(' DEB - - - - - - DEBUG THE STRUCTURE.');
WRITELN(' DEL =- - - - - - DELETE ALL DATA POINTS WITHIN A');
WRITELN(' REGION. ');

WRITELN(' FIND - - - - - - FLAG THE NEEDED NODES TO DEFINE');
WRITELN(' A REGION');

WRITELN(' GET - - - - - - RETRIEVE A REGION OF DATA FOINTS');
WRITELN(' INTO A SEQUENTIAL DATA FORM.');
WRITELN(' HELP - - - - - - PRINT OUT HELP TABILE.');
WRITELN(' NEW = = = - = = CREATE A NEW MAP BUFFER.');
WRITELN(' STOP - - - - - - STOP PROCESSING.');

END; (* OF HELP *)

- 186
4

PROCEDURE ADAMCONTROL (VAR MAP:ADAMMAP);
(* CONTROLS THE USE OF ADAM MAP FUNCTIONS INTERACTIVELY.

*)
N VAR COMMAND:PACKED ARRAY (. 1..4 .) OF CHAR;
a3 RD : REGDEF ;
oh REGIND,K,SIZE: INTEGER;
- DATVEC:DIVEC;
F SDS :SBEQDS ;
I,L:INTEGER;
o BEGIN (* ADAMOONTROL *)
- HELP;
.0 OOMMAND :=' ',
u WHILE COMMAND<>'STOP' DO
" BEGIN (* CYCLE UNTIL TOLD TO STOP. *)
- WRITE(' ADAM COMMAND= ');
- READLN(COMMAND) ;
- IF (COMMAND='ADD ') THEN
- BEGIN (* ADD A DATA POINT. *)
ﬁ INPDIV('DATA PT ',DATVEC,MAP.DIRECT.NUMDIM);
(* INPUT IT. *)
) IF (DATVEC(.1l.)>=0) THEN
o BEGIN (* GET THE POINT INDEX. *)
o INVAL('PT INDEX',DATVEC(.0.),1,MAXINT);
N AADD (MAP, DATVEC) ; (* ADD TO MAP. *)

N o e
& ’
IF (COMMAND='DEB ') THEN

ADEBUG(MAP) ; (* DEBUG A MAP. *)
- IF (COMMAND='DEL ') THEN
o BEGIN (* DELETE A REGION. *)
- INVAL('RBG IND ',REGIND,1,MAXRBEG);

ADELETE (MAP,REGIND) ;

END;

IF (COMMAND='FIND') THEN
BEGIN (* DEFINE A REGION. *)

INVAL('REG IND ',RBGIND,1,MAXREG);
INPDIV('REG MIN ',RD.LOWVAL,MAP.DIRECT.NUMDIM) ;
IF (RD.LOWVAL(.l.))>=0 THEN
BEGIN (* NO ABORT. *)
INPDIV('REG MAX ',RD.HIGHVAL,MAP.DIRECT.NUMDIM);
IF (RD.HIGHVAL(.l.)>=0) THEN
AFIND (MAP,REGIND,RD);
END;
END;
IF (COMMAND='GET ') THEN
BEGIN (* GET ALL THE POINTS IN A REGION. *)
INVAL('REG IND ',REGIND,0,MAXREG);
ARETRIEVE(MAP,REGIND,SDS) ;
IF(SDS(.0,0.)<=0) THEN
WRITELN(PRFILE,
' NO DATA POINTS IN THE REGION.')
ELSE BEGIN

187

.. B . it NS T e TN
AL R ERL § LRER RS TR AN L P *

ST

=T
X

WRITELN(PRFILE, ' RETRIEVED DATA POINTS.');
K:=MAP.DIRECT.NUMDIM;
I:=l;
WHILE (I<=8DS(.0,0.)) DO
BEGIN (* WRITE OUT THE VECTORS. *)
WRITE(PRFILE,SDS(.I,K+1l.),' ');
oUmIvV(SDS(.I.),K,PRFILE);
I:=I+l;

LRI

R

g .
. £
.' ..'r"
Bl P
’
-0
2
~

r——
s

END;
IF (COMMAND='HELP') THEN
HELP; (* PRINT HELP INFORMATION. *)
IF (COMMAND='NEW ') THEN
BEGIN
INVAL('BUF SIZE',SIZE,50,MAXNODES);
INVAL('NUM DIM ',K,1,MAXDIM) ;
INVAL('NOM LEV ',L,3,MAXBIT);
ACREATE (MAP, SIZE,K,L) ; (* FORMAT NEW MAP.*)
END;
IF (COMMAND='STOP') THEN WRITELN(' STOP REQUESTED.');
M END;
o ; (* OF ADAMOONTROL *)

188

Nt e T TNt R I L. RN
P R IR By S A I LRI St N S I

P S e N T e,
PR IR 2P 2 o ot ot

.-

PROCEDURE INITIALIZE;
(* INITIALIZES SYSTEM VARIABIES, *)
VAR I,MVAL:INTEGER;
BEGIN
MVAL:=l;
I:=l;
WHILE (I<MAXBIT) DO
BEGIN (* SET BIT MASKS. *)
MASK(. I .):=sMVAL;
I:=I+1;
IF (IQMAXBIT) THEN (* PREVENT QVERFLOW. *)
MVAL:=MVAL*2;
END;
PRFLAG :=DISPLAY ;
BITFLG:=FALSE;
VECFLG:=FALSE;
END; (* OF INITIALIZE *)

(A A% §

A
LA
R

SR
li e "_

RS |

P

ATA N

e

189

L
b,) i
] , !
., * o
n~ ‘0
-.. ‘o
-— --l
! N
]
b K
- " A. -Q
c_ h.l
k) e
’ ‘
. , ‘..
.~ ' ’ .!
‘ .
.- N » .»
d '_ . ,
L ..
o
¢ %
.
.t ..
o N
v .
o 5
‘. -O
. I
L]
’-nn .
4 .
s
b, |
3
4
&

(* ADAMTEST *)

™
Ak

WRITELN(' ADAM TEST ROUTINE. ');
H

o’ L)
L)

: 3 E8
- R

., - Ef
: B

’,

g m m .
7

' M m
i

1-».

L4

o

<4

3
&
3

¥

-x. Pl

X s mw

XIAAI, 4 0

;?‘.v_.‘.- '-—T A - A TR A AR —T*T""vvf*“*“'~"""""r*'*:»" . .
:
L
A
[PROGRAM ADAMIO;
(* THIS PROGRAM TESTS THE ADAM PROCEDURES *)
QONST
MAXNODES = 50; (* SMALL BUFFER FOR NOW. *)
MAXDIM = 10; (* MAX NUMBER OF DIMENSIONS. *)
MAXBIT = 16; (* INTBGER LENGTH IN BITS. *)
(* MAXBIT SHOULD ALWAYS BE BIGGER THAN MAXDIM. *)
MAXDI = 100; (* MAX DATA ITEMS IN A RETRIEVAL. *)
TYPE NODECELL = RECORD
SPPTR, CDPTR: INTHGER;
DATA:ARRAY (. 1..2 .) OF INTHGER;
END;

NODEARRAY = ARRAY (. 0..MAXNODES .) OF NODECELL;
MAPDIRECT = RECORD
NUMDIM, NUMREG , NUMNODES , NUMLEV : INTEGER ;
END;
ADAMMAP = RECORD
DIRECT :MAPDIRECT;
NODE : NODEARRAY ;
END;
PFILE = TEXT;
BITSET = ARRAY (. l..MAXBIT .) OF BOQLEAN;
BITARRAY = ARRAY (. l..MAXBIT .) OF BITSET;
DIVEC = ARRAY (. 0..MAXBIT .) OF INTHGER;
PUFLAG = (PACK,UNPACK);
SCHRES = (NOTDONE,INSERT,MATCH);
REGDEF = RECORD
LOWVAL , HIGHVAL : DIVEC ;
END;
SEQDS = ARRAY (. 0..MAXDI .) OF DIVEC;
C8ARAY = ARRAY (. 1..8 .) OF CHAR;

MAP:ADAMMAP ;

MASK:ARRAY (. 1..MAXBIT .) OF INTHGER;
PRFILE:PFILE;

PRFLAG: (DISPLAY, PRINTER) ;

BITFLG, VECFLG : BOOLEAN ; (* DEBUG FLAGS. *)

191

I A L VPRI, W RPN W . Gy P AT . -‘L‘L'A_A_;‘;.-_’._‘._‘L;L‘i

e o W W, T T P T e TR e W W

Ot Rt T Y S S T S e e i S i T T T T S T U
------------------------------ L e T e T T T RO -']
....... . ECEC IR U

(* I/0 ROUTINES, *)

PROCEDURE OUIBITS(OFEE:PFH.E;BITS:BrrSEr;MM:MEGm);
(* OUTPUTS NUM BITS TO OFILE. *)

VAR I:INTHGER;

BEGIN

I:=1;

WHILE(I<=NUM) DO
BEGIN (* OUTPUT A BIT. *)
WRITE(OFILE,' ',BITS(.I.):1);
I:=I+1;
END;

WRITELN(OFILE);

END; (* OF OUTBITS *)

192

.......................................

------ N CR R I I

R R PRI PN N . .« . L . . . LI I
Atatiatuiedndeeintnedendende s minmadenmmhtitieesbenaineii Sttt Braadbe e mndtndoem e o A B e A e Bt 2 A

DML Tt i e i) LA Cael s it v s S R e T L W R VL v VA ™ LA A e
RSN S A, Ak P SRS TR NS AL R AR - RN

PROCEDURE OUTVEC (VAR VEC:DIVEC);
(* OUTPUTS ALL OF VEC FOR DEBUGGT*:> *)
VAR I:INTHGER;
BEGIN
I1:=0;
WHILE (I<=MAXBIT) DO
BEGIN (* OUTPUT IN HEX. *)
IF ((I+1)MD 9 = 0) THEN WRITELN(PRFILE);
WRITE(PRFILE,' ', VBC(.I.):4 HEX);
I:=I+1;
END;
WRITELN(PRFILE);
I:=0;
WHILE (I<=MAXBIT) DO
BEGIN (* OUTPUT IN INTHGER. *)
IF ((I+1) MOD 9 = 0) THEN WRITELN(PRFILE);
WRITE(PRFILE,' °',VEC(.I.):6);
s=I+1;
END;
WRITELN{(PRFILE);
END; (* OF OUIVEC *)

it At e L8 i il A Ad A Al oA AT
VUelie LN PRI o wty st W
LSt R N [S R

N O

el
[N
/4

A0

193

PRI S G D VL S/ PSS WG WY Wit V.1 YU - | .

(* INTERACTIVE I/0 ROUTINES. *)

PROCEDURE INVAL (PROMPT:C8ARAY ;VAR VALUE: INTEGER ;
MIN,MAX : INTEGER) ;

(* USES PROMPT TO INPUT A VALUE FROM THE USER.

IGNORES ALL VALUES OUTSIDE THE INTERVAL MIN TO MAX. *)

¥ BEGIN
: VALUE:=MIN-1;

WHILE (VALUE<MIN) OR (MAX<VALUE) DO
! BEGIN (* LOOP UNTIL VALID. *)
. WRITE(' INPUT ',PROMPT,' >');
. READLN(VALUE) ;
: END;

L an ‘lr s

194

L T - T A P U PR NPT ST S At iy WL SPNS TSR S P YPRUE Y SN SN SR, RS BPUE DA -z....:J

...........

PROCEDURE OUTDIV(DATVEC:DIVEC;K:INTEGER;VAR OFILE:PFILE);
(* OUTPUTS K ELEMENTS OF DATVEC TO PFILE. *)
VAR I:INTEGER;
UNSCALE, RVALUE :REAL ;
BEGIN
RVALUE :=MAXINT+1.0;
UNSCALE:=1. 0/RVALUE;
I:=];
WHILE(I<=K) DO
BEGIN
IF (I MOD 5 = 0) THEN WRITELN(OFILE);
RVALUE :=DATVEC(.I.) *UNSCALE;
WRITE(OFILE,' ',RVALUE:7:5);
I:=I+1;

;
WRITELN(OFILE) ;
i

195

....... AT T

RPN A IR U AN S e b A AT AN MRS L e T T et e e e T e T e e T e et e Tl e et

PULIE VS WU VA VLT AT TP U W SUIPNE W SR VA

had
S PROCEDURE INPDIV(PROMPT:C8ARAY ;VAR DATVEC:DIVEC;K: INTEGER) ;
el (* INTERACTIVELY INPUTS THE DATA ITEM VECTOR. *)
e VAR INDEX,IDVAL:INTEGER;
DATAVALUE, RMAXINT : REAL ;
BEGIN
RMAXINT : =MAXINT;

WRITELN(' VECTOR INPUT FOR ',PROMPT);
WRITELN(' INPUT THE ',K:2,' DIMENSIONAL DATA ITEM VECIOR.');
WRITELN(' USE A VALUE <0 TO ABORT INPUT SEQUENCE.');
WRITELN(' ALL INPUTS SHOULD BE');
WRITELN(' 0<= X(I) <1');
INDEX:=1;
WHILE (INDEX<=K) DO
BEGIN (* ONE FOR EACH DIMENSION. *)
WRITE(' X(',INDEX:2,') = ');
READLN (DATAVALUE) ;
IF (DATAVALUE>= 0.0) THEN
BEGIN (* NO ABORT. *)
IF (DATAVALUE>= 1.0) THEN
IDVAL :=MAXINT (* LARGEST INTHGER. *)
ELSE
IDVAL : =IRUNC ((RMAXINT+1. 0)*DATAVALUE) ;
(* NOW IN [0 , MAXINT) RANGE. *)
DATVEC(. INDEX .):=IDVAL;

INDEX :=INDEX+1;
END
ELSE
BEGIN (* ABORT INPUT SEQUENCE. *)
INDEX:=INDEX+10; (* ESCAPE LOOP. *)
DATVEC(. 1 .):= -1; (* INDICATE BAD VALUE. *)
END;
END;
, IF (VECFLG) THEN OUTVEC(DAIVEC);
END; (* OF INPDIV *)
A
BEGIN (* ADAMTEST *)
(*$NULLBODY*)
END.

T

Py P SR F Ve

™
s

A i
. Pl

196

------ AN N T e T w T .

Ty vy T s O TR Y N - . .~
! e, e At e et e S ~‘r_<.-,v """" PUL R A e T DA e e e T T T N T e T e LU
U N AT AT AT AT T e T T T s T T T e e T e T P P I R

-\\

R

Y]

vt

E_'*-
e,
.
.
.-

4
i PROGRAM ADAMTEST;
- : (* THIS PROGRAM TESTS THE ADAM PROCEDURES *)

N
f_-.". .
W
b
&

b
"
b

QONST
MAXNODES = 50; (* SMALL BUFFER FOR NOW. *)
MAXDIM = 10; (* MAX NUMBER OF DIMENSIONS. *)
MAXBIT = 16; (* INTEGER LENGTH IN BITS. *)
(* MAXBIT SHOULD ALWAYS BE BIGGER THAN MAXDIM. *)

MAXDI = 100; (* MAX DATA ITEMS IN A RETRIEVAL. *)
TYPE NODECELL = RECORD
SPPTR,(DPIR: INTEGER;
DATA:ARRAY (. 1..2 .) OF INTEGER;
END;

NODEARRAY = ARRAY (. 0..MAXNODES .) OF NODECELL;
MAPDIRECT = RBECORD
NUMDIM, NUMREG , NUMNODES , NUMLEV : INTBEGER ;
END;
ADAMMAP = RECORD
DIRECT:MAPDIRECT;
NODE : NODEARRAY ;
END;
PFILE = TEXT;
BITSET = ARRAY (. 1l..MAXBIT .) OF BOOLEAN;
BITARRAY = ARRAY (. l1l..MAXBIT .) OF BITSET;
DIVEC = ARRAY (. 0..MAXBIT .) OF INTHGER;
PUFLAG = (PACK,UNPACK);
SCHRES = (NOTDONE, INSERT,MATCH);
REGDEF = RECORD
LOWVAL, HIGHVAL :DIVEC;
END;
SEQDS = ARRAY (. 0..MAXDI .) OF DIVEC:
C8ARAY = ARRAY (. l..8 .) OF CHAR;

MAP: ADAMMAP ;

MASK:ARRAY (. 1..MAXBIT .) OF INTHGER;
PRFILE:PFILE;

PRFLAG: (DISPLAY, PRINTER) ;

BITFLG, VECFLG : BOOLEAN; (* DEBUG FLAGS. *)

197

PURED T P SO BN P IR NP AP S PR AP ST U SO W P S Y PUTC DR AR WL T W PIE W DLW, P

"..'-.(LY v,T v
L 2L PRI R
W
1)
.
B
«

PROCEDURE ADEBUG (VAR MAP:ADAMMAP) ;
(* ALLOWS SOME DEBUGGING AIDS TO BE ACTIVATED/DEACTIVATED
INTERACTIVELY, AND SOME DEBUGGING TOOLS TO BE USED. *)

Rt B e B
B
g 4, 1 !
Fae
A
Nty

VAR OMD:PACKED ARRAY (. 1..4 .) OF CHAR;

P ardnand T O rau Be 2 Bl]
B PR Ty T HUMLES P P A
I AR el PP L
Sl e AN Y R ‘et titata

198

C
el at e e

S NOAIOA DA SN

PROCEDURE PRTNODE (VAR OFILE:PFILE;NODE:NODECELL) ;

(* PRINTS OUT THE OONTENTS OF A SINGLE NODE. *)

BEGIN

WRITE(OFILE,' S/P= ',NODE.SPPIR:6);
WRITE(OFILE,' C/D= ',NODE.CDPIR:6);
WRITE(OFILE,' DATA= ',NODE.DATA(. 1 .):4 HEX);
WRITE(OFILE,' ',NODE.DATA(. 2 .):4 HEX);
WRITELN(OFILE);

END; (* OF PRINODE *)

199

........

.........

'''''''
PO e DAL 4

N

..............
.........

PROCEDURE OUTDIR(VAR OFILE:PFILE;VAR MAP:ADAMMAP);
(* OUTPUTS THE MAP DIRECTORY TO OFILE. *)

BEGIN

WITH MAP.DIRECT DO
BEGIN
WRITELN(OFILE,' MAP DIRECTORY.');
WRITELN(OFILE,' SIZE =',NUMNODES,' NODES.');
WRITELN(OFILE, ' ' ,NOMREG, ' REGIONS');
WRITELN(OFILE,' ' ,NUMDIM, ' DIMENSIONS');
WRITELN(OFILE, ' ' ,NUMLEV,' LEVELS');
END;

END; (* OF OUIDIR *)

200

..........

R I I A A I A A I T A A T T P G LB PRI, TR Tt AN TV PO AR T W PO
2 et P IR T TAEr AT TR B0 Yot PRI U DR L P AT, 0, PN W N T WP S Y L (PRI T ST Sl Gl U I S S, DRI

.......................
..

PROCEDURE HELP;
(* PRINTS OUT LEGAL DEBUG COMMANDS. *)

WRITELN(' BITS - - - — SWITCHES BIT OUTPUT FLAG.');
WRITELN(' DIR - - - - OUTPUT MAP DIRECTORY.');
WRITELN(' DISP - - - - SWITCHES OUTPUT TO DISPIAY.');
WRITELN(' DUMP - - - - PRINTS THE MAP.');

WRITELN(' HELP - - ~ - DISPLAYS THIS TABLE.');
WRITELN(' LIST - - - - SWITCHES OUTPUT TO PRINTER.');

~ OUTPUTS A PAGE ON PRINT FILE.');
- EXIT DEBUG MODE.');
- SWITCHES VECTOR OUTPUT FLAG.');

1
+
J:

201

..............

" et - ® - . B . SN R P .. o
LT NP Yo Yo T 0P SR Ny) POV R P PUN AP R Sl Thl Sl Wkl Sl A e B e PSPPI A Y. P S S S S 9

PROCEDURE DUMPDAT (VAR OFILE:PFILE;VAR MAP:ADAMMAP);
(* PRINTS OUT THE MAP 10 OFILE. *)
VAR START,STOP, INDEX: INTBGER ;

BEGIN
WRITELN(' DUMP NODE CONTENTS.');
WRITE(' INDEX OF STARTING NODE = ');
READLN(START) ;
WRITE(' INDEX OF LAST NODE = ');
READLN(STOP) ;
IF (START<0) THEN START:=0;
IF (STOP>MAP.DIRECT.NUMNODES) THEN STOP:=MAP.DIRECT.NUMNODES;
IF (STOP<START) THEN STOP:=START;
WRITELN(OFILE,' DUMP OF ADAM MAP.');
WRITELN(QFILE,' FROM ' ,START:5,' T0 !',STOP:5);
INDEX :=START;
WHILE (INDEX<=STOP) DO
BEGIN (* ONE NODE AT A TIME. *)
WRITE(OFILE,' °',INDEX:S,' '):
PRINODE(COFILE,MAP.NODE(. INDEX .));
INDEX :=INDEX+1;
END;
WRITELN(OFILE);
END; (* OF DUMPDAT *)

202

DA TP UL T S
................

’
g:i
L

A

]
1

1

{

{

4
4
8
|

4

|
{
{

a
y

eI
-’

E‘

A BEGIN (* DEBUG *)

IR CMD:="NULL' ;

O WHILE (CMD<'STOP') DO
BEGIN
WRITE(' DEBUG COMMAND = ');
READLN(CMD) ;

IF (CMD='BITS') THEN BITFLG:=NOT BITFLG:;
IF (CMD='DIR ') THEN

IF (PRFLAG=DISPLAY) THEN OUTDIR(OUTPUT,MAP)

ELSE OUIIR(PRFILE,MAP);
IF (CMD='DISP') THEN PRFLAG:=DISPLAY;

(* DUMP TO SCREEN. *)

IF (CMD="DUMP') THEN

IF (PRFLAG=DISPLAY) THEN

DUMPDAT (OUTPUT ,MAP)

ELSE DUMPDAT (PRFILE,MAP);
IF (CMD="HELP') THEN HELP;
IF (CMD='LIST') THEN PRFLAG:=PRINTER;

(* DUMP TO PRINTER. *)

IF (CMD='PAGE') THEN

IF (PRFLAG=DISPLAY) THEN PAGE(OUTPUT)

ELSE PAGE(PRFILE);
IF (CMD='STOP') THEN WRITELN(' STOPPING');
IF (CMD='VECS') THEN VECFLG:=NOT VECFLG;
END;

WRITELN(' END OF DEBUG. ');
END; (* OF DEBUG *)

BEGIN (* ADAMTEST *)
(*$NULLBODY*)
END.
203

1

L

» » l:'u.’ l:?
I
]

.

[
.
.

45
AR

NP A
R AR -,

PO
LR T)

--,...- ,_.
- T
I SRS VR

oL A it
»‘x'.‘lﬂt PR A

R AR
ST AP W

PROGRAM ADAMLIB;
(* THIS DUMMIED PROGRAM CONTAINS THE ADAM PROCEDURES ¥)

QONST
MAXNODES = 50; (* SMALL BUFFER FOR NOW. *)
MAXDIM = 10; (* MAX NUMBER OF DIMENSIONS. *)
MAXBIT = 16; (* INTHGER LENGTH IN BITS. *)
(* MAXBIT SHOULD ALWAYS BE BIGGER THAN MAXDIM. *)
MAXDI = 100; (* MAX DATA ITEMS IN A RETRIEVAL. *)
TYPE NODECELL = RECORD
SPPIR, CDPTR : INTEGER ;
DATA:ARRAY (. 1l..2 .) OF INTHGER;
END;

NODEARRAY = ARRAY (. 0..MAXNODES .) OF NODBECELL;
MAPDIRECT = RECORD
NUMDIM, NUMREG , NUMNODES , NUMLEV : INTEGER ;
END;
ADAMMAP = RECORD
DIRECT:MAPDIRECT;
NODE : NODEARRAY ;
END;
PFILE = TEXT;
BITSET = ARRAY (. 1..MAXBIT .) OF BOOLEAN;
BITARRAY = ARRAY (. 1l..MAXBIT .) OF BITSET;
DIVEC = ARRAY (. 0..MAXBIT .) OF INTEGER;
PUFLAG = (PACK,INPACK):;
SCHRES = (NOTDONE, INSERT,MATCH);
REGDEF = RECORD
LOWVAL, HIGHVAL : DIVEC ;
END;
SEQDS = ARRAY (. 0..MAXDI .) OF DIVEC;
C8ARAY = ARRAY (. 1..8 .) OF CHAR;

VAR MAP:ADAMMAP;
MASK:ARRAY (. 1l..MAXBIT .) OF INTHGER;

PRFILE:PFILE;

PRFLAG: (DISPLAY , PRINTER) ;

BITFLG, VECFLG : BOOLEAN; (* DEBUG FLAGS. *)
(* 1/0 ROUTINES. *)

PROCEDURE GUTBITS (OFILE:PFILE; BITS :BITSET;K: INTEGER) ;
EXTERNAL ;
(* OUTPUTS K BITS FROM THE BITSET TO OFILE. *)
PROCEDURE OUTVEC (DATVEC :DIVEC) ; EXTERNALj;
(* OUTPUTS DATVEC TO PRFILE IN HEX AND INTEGER. *)
(* FREE NODE MANIPULATION ROUTINES *)
PROCEDURE GETCELL (VAR NODE:NODEARRAY ;VAR NEW:INTEGER);
EXTERNAL;

204

.................

..........

o
>
&)
ld
A
*
il
.
U

A

ey

BADAE £ * SRR

AN & . e b

(* RETURNS THE INDEX OF THE NEXT FREE NODE AFTER
REMOVING IT FROM THE FREE LIST.
NEW=0 ON RETURN
MEANS "OUT OF FREE STORAGE." *)

PROCEDURE NEWBUFF (VAR NODE:NODEARRAY ;M:INTEGER); EXTERNALj;
(* INITIALIZES A DATA BUFFER OF LENGTH M IN THE NODE
ARRAY INTO A FREE STORAGE LIST.

THIS SETS UP NODE(Q) AS THE HEAD OF THE LIST
OF FREE NODES.
NODE(0) . SPPTR———FOINTER TO NEXT FREE NODE.
NODE(0) . CDPTR———FOINTER TO LAST FREE NODE.
NODE(0) .DATA (1)—-NUMBER OF NODES. *)

PROCEDURE RETCELL(VAR NODE:NODEARRAY ;OLD:INTEGER); EXTERNAL;
(* RETURNS AN QLD NODE TO THE FREE STORAGE LIST
AFTER CHECKING FOR DETECTABLE ERRORS. *)

(* BIT MANIPULATION UTILITIES. *)

PROCEDURE BITPU(VAR BITS:BITSET;VAR INTWD:INTBGER;DIR:PUFLAG);
EXTERNAL ;
(* KEYS ON DIR (PACK OR UINPACK) TO
PACK BITS INTO INIWD, OR
UNPACK INTWD INTO BITS. *)

PROCEDURE CRTLSK (VAR LSKVEC :DIVEC;DATVEC:DIVEC;K:INTEGER) ;
EXTERNAL ;
(* CREATE THE LEVEL SEARCH KEYS FROM THE DATA ITEM VECTOR,
DATVEC. THE ITH LEVEL SEARCH KEY OONSISTS OF THE ITH MSB
OF EACH OF THE ELEMENTS OF DATVEC. THERE ARE K ELEMENTS
IN DATVEC, AND MAXBIT ELEMENTS IN LSKVEC. *)

(* MAP MANIPULATION UTILITIES. *)

PROCEDURE NODEINS (VAR MAP:ADAMMAP ; NEWONE, PARENT , LASTONE,
NEXTONE: INTEGER) ; EXTERNAL ;
(* INSERTS THE NODE AT NEWONE BEIWEEN LASTONE AND NEXTONE,
COMPENSATING IF EITHER IS A PARENT. *)

PROCEDURE MAPSRCH(VAR LSEARCH:SCHRES;VAR PARENT,LASTONE,
NEXTONE, LEVEL : INTBGER ; VAR MAP :ADAMMAP ;
VAR LSK:DIVEC); EXTERNAL;
(* SEARCHES THE MAP IN NODEARRAY FOR THE LEVEL SEARCH
KEYS IN LSK. LSEARCH RETURNS INSERT OR MATCH, AND THE
POSITION IS RETURNED IN LEVEL, PARENT, LASTONE, AND
NEXTONE. *)

205

.............

Aiar S S R L
P

f Foa .
ottt

oo e ot 20 2e e
QAR DT AR R

. S NI
-~ [S - e P »

s

PROCEDURE AADD (VAR MAP :ADAMMAP ; DATVEC :DIVEC) ;

(* ADDS DATA POINTS TO THE MAP. USES INTERACTIVE DATA ENTRY.

VAR LSKVEC:DIVEC;

NEWONE, PARENT , LASTONE , NEXTONE , BOTTOM, LEVEL : INTEGER ;

LSEARCH : SCHRES ;

PERPRP Y TSP

206

(* NODE PIRS. *)

- .~y Sata i

.....

.....

4 PROCEDURE BUILDB(VAR MAP:ADAMMAP;VAR LEVEL, NEWONE, BOTTOM:
S INTBEGER; VAR LSKVEC:DIVEC);
(* BUILDS A BRANCH IN MAP, STARTING AT LEVEL, USING
KEYS FROM LSKVEC, AND EXTENDING TO THE "DIRECT.NUMLEV"
LEVEL. *)
VAR L, INDEX, LASTNODE, NEBWNODE: INTEGER;

BEGIN
WITH MAP DO
BEGIN
L:=DIRECT.NUMLEV; (* MAX DEPTH OF THIS MAP. *)
INDEX :=LEVEL;
GETCELL (NODE, NEWNODE) ;
NEWONE s =NEWNODE ;
IF (NEWONE>0) THEN
NODE(.NEWONE.) .DATA(. 1 .):=LSKVEC(.INDEX.);
WHILE(INDEX<L) AND (NEWONE>0) DO

BEGIN (* ADD NODE LEVELS. *)
LASTNODE :=NEWNODE ;
INDEX :=INDEX+1;
GETCELL (NODE, NEWNODE) ;
IF (NEWNODE>0) THEN
BHGIN (* VALID CELL. *)

NODEINS (MAP , NENNODE, LASTNODE, LASTNODE, 0) ;
(* INSERTS BELOW IT. *)
NODE(. NEWNODE.) .DATA(. 1 .):=LSKVEC(.INDEX.);
(* STORE KEY. *)
Q BND
ELSE

BEGIN (* NOT ENOUGH CELLS. *)

LASTNODE :=NEWONE ;

WHILE (LASTNODE>Q) DO
BEGIN (* RETURN THE NODES. *)
NEWNODE : =NODE(. LASTNODE.) .CDPTR;
RETCELL (NODE, LASTNODE) ;
LASTNODE : =NEWNODE ;
END;

NEWONE : =NEWNODE ; (* NULI, POINTER. *)

END;

END;
END;
BOTTOM : =NEWNODE ;
END; (* OF BUILDB *)

— GO RRELR
0% P SR
L Rtet Lttt

I E.:‘-_ ,'~..- "1_‘.;_.‘.

207

PP Y AL TUAE WA U YRGS P O [- » y PR S | PP SRV SRR MR S S S

...................

BEGIN (* AADD *)
IF (DATVEC(. 1 .) >= 0) THEN
BEGIN (* DATA VALID. *)
CRTLSK (LSKVEC,, DATVEC ,MAP . DIRECT . NUMDIM) ;
(* CREATE LEVEL SEARCH KEYS. *)
IF (VECFLG) THEN OUTVEC(LSKVEC);
MAPSRCH (LSEARCH, PARENT , LASTONE , NEXTONE , LEVEL,

MAP,LSKVEC) ;
(* SEARCH THE MAP FOR INSERT POINT OR
MATCH. *)
IF (LSEARCH = INSERT) THEN
BEGIN (* BUILD A BRANCH TO INSERT. *)

BUILDB({MAP,LEVEL, NBWONE, BOTTOM, LSKVEC) ;
IF (BOTTOM>0) THEN
BEGIN (* ONLY VALID IF BRANCH IS GOOD. ¥*)
NODEINS (MAP , NEWONE , PARENT , LASTONE , NEXTONE) ;
(* AND INSERT IT. ¥*)
MAP, NODE (. BOTTOM.) .CDPIR :=-DATVEC(.0.);
(* THE DATA POINT VALUE. *)
END;
END
ELSE
IF(LSEARCH = MATCH) THEN
WRITELN(' *** DUPLICATE DATA POINT., ***');
END;
END; (* OF AADD *)

208

Ty

!

]

‘-'rrer
[

S B 4R DR SPASTEO
...-.... a " A
3 LY B B A R

.....

.........................

PROCEDURE ACREATE (VAR MAP:ADAMMAP;M,K,L:INTEGER);
(*CREATES AN EMPTY ADAM MAP IN THE M-NODE MAP BUFFER AREA,
SETTING UP THE DIRECTORY AND FREE STORAGE LIST. *)

VAR ROOT:INTEGER;

BEGIN
WITH MAP DO
BEGIN (* INITIALIZE THE MAP. *)
IF (M<1) THEN NODE(. 0 .).SPPTR:=0
ELSE
BEGIN
NEWBUFF (NODE,M); (* INITIALIZE THE FREE NODE LIST.*)
DIRECT.NUMDIM:=K; (* NUMBER OF DIMENSIONS. *)
DIRECT.NUMNODES :=M; (* MAX NUMBER OF NODES. *)
DIRECT. :=0; (* NO REGIONS INITIALLY. *)
DIRECT. NUMLEV :=L; (* MAX NUMBER OF LEVELS. ¥*)
GETCELL (NODE,ROOT); (* GET ROOT NODE. *)
WITH NODE(.ROOT.) DO
BEGIN
SPPTR:=-1; (* POINTS TO SELF AS PARENT. *)
CDPTR:=0; (* NO CHILDREN YET. *)
DATA(. 1 .):=0; (* KEY:=0 *)
DATA(. 2 .):=0; (* NO REGIONS. *)
END;
END;
END;
END; (* OF CREATE *)

BEGIN (* ADAMTEST *)

(*$NULLBODY*)
END.

209

...........

PROGRAM ADAMLIB2;
(* THIS DUMMIED PROGRAM CONTAINS THE ADAM PROCEDURES
RETRIEVE, FIND, AND DELETE. *)

QONST
MAXNODES = 50; (* SMALL BUFFER FOR NOW. *)
MAXDIM = 10; (* MAX NUMBER OF DIMENSIONS. *)
MAXBIT = 16; (* INTEGER LENGTH IN BITS. *)
(* MAXBIT SHOULD ALWAYS BE BIGGER THAN MAXDIM. *)
MAXDI = 100; (* MAX DATA ITEMS IN A RETRIEVAL. *)
MAXREG = 8; (* MAX NUMBER OF FLAGGED REGIONS. *)
TYPE NODECELL = RECORD
SPPTR, CDPTR: INTEGER ;
DATA:ARRAY (. l..2 .) OF INTEGER;
END;

NODEARRAY = ARRAY (. 0..MAXNODES .) OF NODBECELL;

NUMDIM, NUMREG , NUMNODES , NUMLEV : INTHGER ;

PARENT , CURRENT , LASTONE , NEXTONE , REGION : INTEGER ;
END;

MAPPOS = ARRAY (. 1..MAXBIT .) OF POSITION;
PFILE = TEXT;

BITSET = ARRAY (. 1..MAXBIT .) OF BOOLEAN;

BITARRAY = ARRAY (. l..MAXBIT .) OF BITSET;

DIVEC = ARRAY (. 0..MAXBIT .) OF INTEGER;
PUFLAG = (PACK,UNPACK);

(NOTDONE, INSERT ,MATCH) ;
(INSIDE,OVERLAP,OUTSIDE, UNKNOWN) ;
(OKAY , ENDLEV , TERM, EMPTY , ATTOP ,ATBOT) ;
(

(

:

UP, DOWN ,ACROSS , STOP, COMPARE) ;
TOP, LEAF , NEWNODE , OLDNODE , NEXT') ;
REGDEF = RECORD

LOWVAL, HIGHVAL : DIVEC ;

END;
SEQDS = ARRAY (. 0..MAXDI .) OF DIVEC;
CBARAY = ARRAY (. 1..8 .) OF CHAR;

i

VAR MAP:ADAMMAP;
MASK:ARRAY (. 1l..MAXBIT .) OF INTHGER;

PRFILE:PFILE;

PRFLAG: (DISPLAY, PRINTER);

BITFLG, VECFLG : BOOLEAN ; (* DEBUG FLAGS. *)
(* I/0 ROUTINES. *)

PROCEDURE OUTBITS (OFILE:PFILE; BITS :BITSET;K: INTEGER) ;
EXTERNAL;

210

M PP TR, L

Xas I AR
' . ' 3
. x.....'.. L aeeln

k440 2t o 2vke e o)
-;bho Sl s

et

(* OUTPUTS K BITS FROM THE BITSET TO OFILE. *)
(* FREE NODE MANIPULATION ROUTINES *)

PROCEDURE RETCELL (VAR NODE:NODEARRAY ;OLD:INTEGER); EXTERNAL;
(* RETURNS AN OLD NODE TO THE FREE STORAGE LIST
AFTER CHECKING FOR DETECTABLE ERRORS. *)

(* BIT MANIPULATION UTILITIES. *)

PROCEDURE BITPU(VAR BITS:BITSET;VAR INIWD:INTEGER;DIR:PUFLAG);
EXTERNAL ;
(* KEYS ON DIR (PACK OR UNPACK) TO
PACK BITS INTO INTWD, OR
UNPACK INTWD INTO BITS. *)

(* MAP COMPARISON ROUTINES. *)

PROCEDURE ARSELECT (REGFLD,REGIND : INTEGER ; VAR COND :REGCOND) ;

EXTERNAL;
(* EXTRACTS THE OONDITION OF THE REGION FLAGS FOR THE
REGIND REGION, USING THE REGION FLAGS IN REGFLD. RETURNS
THE CONITION OF THE FLAGS IN COND.
THE REGION FLAGS ARE TWO BITS, AND ARE INTERPRETED AS
FOLLOWS :

00——UNKNOWN

01—-OUTSIDE

10—-INSIDE

11—-COVERLAP
IF THE REGION INDEX IS ILLEGAL THEN THE RETURN IS ALMWAYS
"INSIDE". *)

(* MAP MANIPULATION UTILITIES. *)

PROCEDURE AMAPTRAV(VAR MAP:ADAMMAP;VAR POS:MAPPOS;
VAR LEVEL: INTEGER ; OPER :MAPOPER ; VAR RESULT :TRAVRES ;
VAR PRFILE:PFILE);
EXTERNAL ;
(* TRAVERSES THE ADAM MAP ONE NODE AT A TIME IN
THE DIRECTIONS INDICATED BY OPER. KEEPS TRACK OF THE
POSITION IN POS AND LEVEL, AND RETURNS THE RESULTING NODE
TYPE AS FOLLOWS:
TOP —- DONE, ERROR OR NOT
LEAF—- REACHED A LEAF
NEWNODE—- NEW NODE- OLD LEVEL, OR
NEW NODE- NEW LEVEL
OLDNODE—- QLD NODE- QLD LEVEL *)

211

PROCEDURE ADELETE (VAR MAP:ADAMMAP ; INDEX : INTEGER) ;
(* DELETES THE DATA POINTS IN THE FIND REGION INDICATED BY
REGIND IN THE MAP. *)
TYPE REMRES = (IAST,NOTLAST,YES,NO);
VAR RESULT:TRAVRES;
OPER :MAPOPER;
REMFLG:REMRES ;
COND :REGCOND ;
NEWREG , FOINT, LEVEL : INTEGER ;
POS :MAPPOS ;

T
e

@

4

"r“ l" V"I- l"" I- I‘Y
Fd

!

212

P e " PR W 3 b B oo A

e e T T e T e e e e

L.

R et e i Piadt AaitindeCandnhait i it Bl R A e e
R e T e i T T T

3

K

Londd ;’r .
o ® PRV -
P h Sfetaa

) PROCEDURE REMNODE(VAR MAP:ADAMMAP;VAR POSIT:POSITION;

s VAR REMFLG:REMRES);

) (* REMOVES A SINGLE NODE FROM THE MAP. ITS LOCATION IS IN
POSIT, WHICH IS UPDATED TO THE NEXT CELL. THE REMOVED

2 NODE IS RETURNED TO FREE STORAGE. *)

v BEGIN

N WITH POSIT DO

s BEGIN

‘) K
by
e

LA

W

. .
rh LW S I

POINT :=CURRENT';
IF (PARENT<LASTONE) THEN
MAP.NODE(.LASTONE.) . SPPTR : =NEXTONE
ELSE IF(NEXTONE<O) THEN MAP.NODE(.PARENT.).CDPTR:=0
ELSE MAP.NODE(. PARENT.) .CDPTR :=NEXTONE ;
IF (NEXTONE<Q) THEN REMFLG:=ILAST
ELSE, BEGIN
REMFLG :=NOTLAST;
CURRENT : =NEXTONE ;
NEXTONE :=MAP.NODE(. CURRENT.) . SPPTR;
END;
END;
RETCELL (MAP . NODE, POINT) ;
END; (* OF REMNODE ¥*)

I PP LG uiohd ARt oS

DN AAN B | QRIS

7
I

[F

+

A

P L5
.
F
3
]
A
L
y
q
L
<
[
4
o
¥
n
o
3
]
]
4
l.‘
L&
|!.
" 4
1]
'.1
1

...

D diad
.8

. e '- »
(A PN g

i
o
hE BEGIN (* ADELETE *)
oy LEVEL:=1;
" WITH POS(.LEVEL.) DO
iy BEGIN
fe.] CURRENT :=1;
S PARENT:=1;
NEXTONE :=MAP . NODE (. CURRENT.) . SPPIR;
LASTONE:=];
REGION :=INDEX;
NEWREG :=REGION;
END;
RESULT : =NEWNODE ;
WHILE (RESULT<>TOP) DO
BEGIN
WITH POS(.LEVEL.) DO
BEGIN
IF (OPER=DOWN) AND (RESULT<>NEXT) THEN
REGION :=NEWREG ;
CASE RESULT OF
NEWNODE : BEGIN
RESULT :=NEXT;
ARSELECT(MAP. NODE(. CURRENT.) .DATA(.2.),
REGION,COND);

IF (COND=OUTSIDE) THEN OPER:=ACROSS
ELSE BEGIN (* TRAVERSE THE SUBTREE. *)
IF (COND=INSIDE) THEN NEWREG:=0
ELSE NFWREG :=REGION;
OPER :=DOWN;
END;
END;
NEXT': (* PERFORM NEXT MOVE. *)
AMAPTRAV(MAP, FOS, LEVEL,OPER , RESULT, PRFILE) ;
OLDNODE: (* MOVING UP, REVISITED. *)
IF (MAP.NODE(.CURRENT.).CDPTR=0) THEN
REMFLG:=YES (* UNUSED, REMOVE IT. *)
ELSE BEGIN (* USED, MOVE ON. *)
RESULT : =NEXT;
OPER :=ACROSS;
END;
LEAF :REMFLG:=YES; (* LEAF INSIDE, REMOVE IT. *)
END;
IF (REMFLG=YES) THEN
BEGIN (* REMOVE THE CURRENT NODE. *)
REMNODE(MAP, POS(.LEVEL,.) ,REMFIG);
IF (REMFLG=LAST) THEN

BEGIN (* NO MORE AT LOWER LEVEL. *)
LEVEL:= -1;
RESULT : =QLDNODE ;
NEWREG : =POS(.LEVEL.) .REGION;
END

ELSE RESULT :=NEWNODE ;

REMFLG:=NO;

END;

;
214

...............
.....

END; (* OF ADELETE *)
»
.
=
rt:!i.'.
215

— R - sl - et -~
T—— P e MM A I AP A AL S i N IR - M e o e w

PROCEDURE AFIND(VAR MAP :ADAMMAP; INDEX : INTEGER;
VAR RD:REGDEF);
(* FINDS A REGION IN THE ADAM MAP AND FLAGS THE SUBTREES
AS INSIDE, OUTSIDE, OR OVERLAPPING THE REGION.*)

VAR TRACE:BITARRAY ; (* QOLLECTS THE TRACE BIT PATTERNS. *)
I,K,LEVEL,CZERO, VALUE: INTEGER ;
POS :MAPFOS ;
RESULT : TRAVRES ;
OPER :MAPOPER ;
COND : REGCOND ;
LFLAG : BOOLEAN;

216

. - . . St et . EEE D)
- - 4 KO B . PUNIRT “GROUr VU S Y P R L Y S . N N RN

PROCEDURE AREGOOMP (KEYFLD,K,LEVEL : INTEGER ;
. VAR TRACE:BITARRAY ;VAR RD:RBEGDEF;VAR COND:RBEGCOND);
* (* COMPARES A RECTANGULAR SEARCH REGION AND A NODE
REGION TO DETERMINE THEIR INTERSECTION CONDITION.
THE RESULTS ARE AS FOLLOWS:
OUTSIDE - - -NODE REGION IS QUTSIDE SEARCH
INSIDE - - ~NODE REGION IS ENTIRELY INSIDE
OVERLAP - - -NODE AND SEARCH REGIONS OVERLAP
BUT THE NODE IS NOT ENTIRELY
INSIDE THE SEARCH
UNKNOWN - - -NO OCOMPARISON HAS BEEN DONE. *)
VAR I,SIZE,NRLOW,NRHIGH,RLOW,RHIGH,CVALUE: INTEGER;
KEY :BITSET;

¥ wwv—w

: A
. P

L
[N

"
IP‘- .
o

BEGIN
IF (LEVEL>l) THEN SIZE:=MASK(.MAXBIT-LEVEL+l.)
ELSE SIZE:=0;
IF (VECFLG) THEN
BEGIN
WRITELN(PRFILE);
WRITELN(PRFILE,' REGION LIMITS FROM FIND REGION',
' OOMPARE."');
END;
BITPU(KEY , KEYFLD,UNPACK) ;
COND :=INSIDE;
I:=1;
WHILE (I<=K) DO
BEGIN (* CHECK EACH DIMENSION. *)
TRACE(.I,LEVEL.) :=KEY (MAXBIT-I+l.);
BITPU(TRACE(.I.),CVALUE,PACK);
IF (LEVEL<=1) THEN

BEGIN
NRLOW:=0;
NRHIGH :=MAXINT;
END
ELSE
BEGIN (* SET UPPER AND LOWER INTERVAL
LIMITS FOR COMPARISON.*)
NRLOW :=CVALUE;
NRHIGH :=(CVALUE-1)+SIZE;
END;
RLOW:=RD .LOWVAL(.I.);
RHIGH :=RD . HIGHVAL(.I.);
IF (VECFLG) THEN WRITELN(PRFILE, NRLOW,NRHIGH,RLOW,RHIGH);
IF (NRHIGH<RLOW) OR (RHIGH<NRLOW) THEN
COND :=OUTSIDE (* MUTUALLY EXCLUSIVE. *)
ELSE IF (NRLOWCKRLOW) OR (RHIGH<NRHIGH) THEN
COND :=OVERLAP ;
IF (COND=OUTSIDE) THEN I:=K+1 (* ESCAPE. *)
ELSE I:=I+1; (* NEXT DIMENSION. *)

END;
IF (VECFLG) THEN WRITELN(PRFILE):;
END; (* OF AREGCOMP *)

217

PP AT I AU I TR RSP S PRI SRS DI WL WIS YA DU S JL DU AL I LIPS L AP PP W A R A WPy WA I gt

e,y ew RadNE artie et ae i - T AP O - N W e W T A T e T R W T R e T e e e e
T T T I N e T T e e s e s TN TN T T T T T T s T e R G o 0 s R

2t me T et e ta T R e S N . e Y .
-

_ PROCEDURE ARSET (VAR RBEGFLD:INTEGER ; REGIND : INTEGER;
ERE COND :REGCOND) ;
(* SETS THE BITS FOR THE REGION INDICATION IN THE
PROPER LOCATION FOR THE REGION INDEX IN THE REGION
FIELD. THE REGION FLAGS ARE AS FOLLOWS:
00——-UNKNOWN
01—-OUTSIDE
10—-INSIDE
11—-OVERLAP.
PERFORMS UNION WITH PREVIOUSLY SELECTED PORTIONS OF THE
REGION *)
VAR REGION:BITSET;
BITLOC: INTEGER;
BEGIN
IF (REGIND>=1l) AND (REGIND<=MAXREG) THEN
BEGIN
BITLOC :=(REGIND-1)*2+1;
BITPU(RBGION,REGFLD, INPACK) ;
REGION(.BITIOC.) := (COND=INSIDE) OR (COND=OVERLAP) OR
REGION(.BITLOC.);
REGION(. BITLOC+1.) :=(COND=OUTSIDE) OR (COND=OVERLAP);
IF (BITFLG) THEN
BEGIN
WRITELN(PRFILE,' NEW REGION FLAG FIELD.');
OUTBITS (PRFILE, REGION,MAXBIT) ;
END;
BITPU(REGION,REGFLD,PACK);
@ END;
END; (* OF ARSET *)

rrvevmn
R
»

PR

Nt

1

Lt i AN RS RE)

B
AR LRI
B ERR N

PP

vv.—,'_
A
.

‘3 28

.............

BEGIN (* FIND *)

CZERO:=0;
K:=MAP, DIRECT.NUMDIM;
I:=1;
WHILE (I<=MAXBIT) DO
BEGIN (* INIT TRACE T0 0. *)
BITPU(TRACE(.I.) ,CZERO, UNPACK);
:=I+1;
END;
LEVEL:=l;
WITH POS(.LEVEL.) DO
BEGIN (* SET POSITION OF ROOT. *)
CURRENT :=1;
PARENT:=1;
NEXTONE :=MAP. NODE (. CURRENT.) . SPPIR;
LASTONE:=1;
END;
LFLAG:= H
RESULT : =NEWNODE ;
WHILE (RESULT<>TOP) DO
BEGIN (* TRAVERSE THE TREE AS NEEDED. *)
WITH POS(.LEVEL.) DO
BEGIN (* BASE POSITION ON THE CURRENT LEVEL

FOR EACH PASS IN THIS LOOP. *)

CASE RESULT OF

NEWNODE:BEGIN (* OOMPARE CURRENT NODE. *)
ARBGCOMP (MAP . NODE(. CURRENT.) .DATA(.1.),

K,LEVEL, TRACE,RD,QOND) ;
ARSET(MAP. NODE(. CURRENT.) .DATA(.2.),
INDEX,COND);
IF LFLAG THEN OPER:=ACROSS
ELSE IF (COND=OVERLAP) THEN OPER :=DOWN
ELSE OPER :=ACROSS;
RESULT : =NEXT;
END;

NEXT:BEGIN (* MOVE TO NEXT NODE. *)
LFLAG:=FALSE;
AMAPTRAV(MAP, POS, LEVEL,OPER , RESULT, PRFILE) ;
IF (RESULT=CLDNODE) THEN

BEGIN (* RETURNED UP TO NODE

ALREADY VISITED. *)

I:=];

WHILE (I<=K) DO
BEGIN (* CLEAR OUT LAST

LEVEL OF TRACE. *)

TRACE(.I,LEVEL+l.) :=FALSE;
I:=I+l;

END;
LEAF :BEGIN
IF (BITFLG) THEN

219

i BEGIN
i WRITELN(PRFILE,' TRACE VALUES');
I:=1;
WHILE (I<=K) DO
BEGIN
BITPU(TRACE(.I.),VALUE,
PACK);
WRITE(PRFILE,
(VALUE/ (MAXINT+1.0)) :7:5,
L} L);
I:=I+1;
END;
WRITELN(PRFILE);
END;
LFLAG:=TRUE;
RESULT : =NEWNODE ;
END;
END;
END;
END;
END; (* OF AFIND *)

O 0 AT KR WYt e e
OAMARTIAN * RPAICttY

:
[
. ! v

220

PROCEDURE ARETRIEVE(VAR MAP:ADAMMAP ; INDEX : INTEGER ;
VAR SDS:SEQDS);
(* RETRIEVES THE REGION DEFINED BY INDEX INTO THE
SBEQUENTIAL DATA SET SDS. *)

VAR RESULT:TRAVRES;
POS:MAPPOS;
KEY :BITSET;
COWNT, I,K,LASTREG, LEVEL , NEWREG : INTEGER ;
TRACE : BITARRAY ;
OPER :MAPOPER ;
QOND : REGOOND ;

PARENT:=1;
NEXTONE :=MAP, NODE(. CURRENT.) . SPPTR;
LASTONE:=1;
REGION:=INDEX ;
NEWREG : =REGION;
END;
OPER :=DOWN;
RESULT : =NEWNODE;
WHILE (RESULT<>TOP) DO
BEGIN (* TRAVERSE ENTIRE TREE, *)
WITH POS(.LEVEL.) DO
BEGIN
IF (OPER=DOWN) AND (RESULT<>NEXT) THEN
REGION :=NEWREG;
CASE RESULT OF
NEWNODE: BEGIN (* OOMPARE CURRENT NODE. *)
RESULT :=NEXT';
ARSELECT (MAP.NODE(. CURRENT.) .DATA(.2.),
RBEGION,COND) ;
IF (COND=INSIDE) OR
(COND=OVERLAP) THEN
BEGIN (* TRAVERSE THE SUBTREE. *)

BITPU(KEY,
MAP.NODE(.CURRENT.) .DATA(.1.),
UNPACK) ;
I:=];
WHILE (I<=K) DO
BEGIN (* SAVE THE TRACE
BITS. *)
TRACE(.I,LEVEL.):=
KEY (MAXBIT-I+1,);
I:=I+1;
END;

IF (COND=INSIDE) THEN NEWREG:=0
ELSE NEWRBEG :=REGION;

221

St in oS St el - . el PP N e b o

-) OPER :=DOWN ;
RO END
,! - ELSE OPER:=ACROSS; (* IGNORE SUBTREE. *)
BEND;
o NEXT: BEGIN (* PERFORM NEXT MOVE. *)
s AMAPTRAV(MAP, POS, LEVEL, OPER, RESULT, PRFILE) ;
g IF (RESULT=CLONODE) THEN
=4 BEGIN (* CAME UP TO NODE ALREADY
VISITED, MOVE ON. *)
RESULT :=NEXT;
OPER :=ACROSS;
END;
END;
LEAF : BEGIN (* SAVE TRACES FOR DATA
ITEM, *)
IF (COUNT<MAXDI) THEN COUNT:=COUNT‘+1;
I:=1;

WHILE (I<=K) DO
BEGIN (* GET THE TRACE. *)
BITPU(TRACE(.I.),SDS(.COUNT,I.),

PACK);
I:=I+1;
END;
SDS(.COUNT, K+1.) :=
=-MAP, NODE(. CURRENT.) .CDPIR;
RESULT :=NEXT;
OPER :=ACROSS ;
END;
END;
END;
END;
SDS(.0,0.) :=COUNT;
END; (* OF RETRIEVE *)
BEGIN (* ADAMTEST *)
(*$NULLBODY*)
mD.

r' 222

.......

.......................................

............................

POSITION = RECORD
PARENT, CURRENT , LASTONE, NEXTONE , REGION : INTEGER ;
BND;
MAPPOS = ARRAY (. 1..MAXBIT .) OF POSITION;
PFILE = TEXT;
BITSET = ARRAY (. 1..MAXBIT .) OF BOOLEAN;
BITARRAY = ARRAY (. l..MAXBIT .) OF BITSET;
DIVEC = ARRAY (. 0..MAXBIT .) OF INTHGER;
PUFLAG = (PACK, UNPACK) ;
SCHRES = (NOTDONE, INSERT,MATCH) ;
= REGCOND = (INSIDE,OVERLAP,OUTSIDE, UNKNOWN) ;
2 MAPSTAT = (OKAY, ENDLEV, TERM, EMPTY, ATTOP,ATBOT) ;
MAPOPER = (UP,DOWN,ACROSS, STOP,COMPARE) ;
TRAVRES = (TOP,LEAF, NBWNODE, OLDNODE, NEXT) ;
REGDEF = RECORD
LOWVAL , HIGHVAL : DIVEC;
END;
SBQDS = ARRAY (. 0..MAXDI .) OF DIVEC;
CBARAY = ARRAY (. 1..8 .) OF CHAR;

LAt
’
.

QUURLAR AL NS -4 IR OMIS L AL oL I KADOK AR AEMACL

(* 1/0 ROUTINES. *)

PROCEDURE OUTBITS (OFILE:PFILE;BITS :BITSET;K:INTEGER) ;
EXTERNAL;
(* OUTPUTS K BITS FROM THE BITSET TO OFILE. *)

PROCEDURE OUTVEC (DATVEC :DIVEC) ; EXTERNAL ;
(* OUTPUTS DATVEC TO PRFILE IN HEX AND INTHGER. *)

PROGRAM ADAMLIB3;
R (* THIS DUMMIED PROGRAM CONTAINS SOME OF THE ADAM
ta ' SUPPORT PROCEDURES *)
QONST
MAXNODES = 50; (* SMALL BUFFER FOR NOW. *)
MAXDIM = 10; (* MAX NUMBER OF DIMENSIONS. *)
MAXBIT = 16; (* INTEGER LENGTH IN BITS. *)
(* MAXBIT SHOULD ALWAYS BE BIGGER THAN MAXDIM. *)
MAXDI = 100; (* MAX DATA ITEMS IN A RETRIEVAL. *)
MAXREG = 8; (* MAX NUMBER OF FLAGGED REGIONS. *)
TYPE NODECELL = RECORD
SPPTR,(DPTR : INTEGER;
DATA:ARRAY (. l..2 .) OF INTEGER;
END;
NODEARRAY = ARRAY (. 0..MAXNODES .) OF NODBCELLj;
MAPDIRECT = RECORD
NUMDIM, NUMREG , NUMNODES , NUMLEV : INTEGER ;
END;
ADAMMAP = RECORD
DIRECT:MAPDIRECT;
NODE : NODEARRAY ;
END;

- 223

4

e

-

" .

.

GNP e SUPCICINIRIEIN L R LR A SN K e .

.....

(* FREE NODE MANIPULATION ROUTINES *)

PROCEDURE RETCELL (VAR NODE:NODEARRAY ;OLD:INTEGER); EXTERNAL;
(* RETURNS AN OLD NODE TO THE FREE STORAGE LIST
AFTER CHECKING FOR DETECTABLE ERRORS. ¥*)

(* BIT MANIPULATION UTILITIES. *)

PROCEDURE BITPU(VAR BITS:BITSET;VAR INIWD:INTHGER;DIR:PUFLAG);
EXTERNAL ;
(* KEYS ON DIR (PACK OR UNPACK) TO
PACK BITS INTO INIWD, OR
UNPACK INIWD INTO BITS. *)

PROCEDURE CRTLSK(VAR LSKVEC:DIVEC;DATVEC:DIVEC;K:INTEGER);
EXTERNAL ;
(* CREATE THE LEVEL SEARCH KEYS FROM THE DATA ITEM VECTOR,
DATVEC. THE ITH LEVEL SEARCH KEY OONSISTS OF THE ITH MSB
OF EACH OF THE ELEMENTS OF DATVEC. THERE ARE K ELFMENTS
IN DATVEC, AND MAXBIT ELEMENTS IN LSKVEC. *)

224

..

PROCEDURE ARSELECT(REGFLD,REGIND : INTEGER ; VAR COND : REGCOND) ;
(* EXTRACTS THE CONDITION OF THE REGION FLAGS FOR THE
REGIND REGION, USING THE REGION FLAGS IN REGFLD. RETURNS
THE OONITION OF THE FLAGS IN OOND.

THE REGION FLAGS ARE TWO BITS, AND ARE INTERPRETED AS
FOLLOWS :
00——UNKNOWN
01—-OUTSIDE
10-—-INSIDE
11—~OVERLAP
IF THE REGION INDEX IS ILLEGAL THEN THE RETURN IS ALWAYS
"INSIDE". *)
VAR REGION:BITSET;
BITLOC : INTEGER ;
BEGIN
- IF (REGIND<1) OR (REGIND>MAXREG) THEN COND:=INSIDE
ELSE BEGIN
BITPU(REGION,REGFLD, UNPACK) ; (* GET THE BITS. *)
BITLOC :=(REGIND-1)*2+1; (* FIND THE FIELD LOCATION. ¥*)
IF (REGION(.BITLOC.) AND REGION(.BITLOC+l.)) THEN

QOND : =OVERLAP
ELSE IF REGION(.BITLOC.) THEN COND:=INSIDE
ELSE IF REGION(.BITLOC+l.) THEN COND:=QUTSIDE
ELSE OOND :=UNKNOWN ;
END;
END; (* OF ARSELECT ¥*)

VIR, UL S A YT AN WA WO N o ¥ l‘_“A;A..‘_‘i

..

PROCEDURE AMOVE(VAR MAP:ADAMMAP;VAR POS:MAPPOS;
VAR LEVEL:INTEGER;DIR:MAPOPER;VAR STATUS:MAPSTAT);
(* MOVES OVER ONE NODE IN THE DIRECTION INDICATED
BY DIR. UPDATES THE POSITION STACK, AND RETURNS
THE STATUS VALUE ACCORDING TO THE NODE TYPE REACHED
AS FOLLOWS:
ATTOP —-—~TOP OF MAP STRUCTURE REACHED
ATBOT —---BOTTOM REACHED, BUT NO TERMINAL
EMPTY ~——-NULL POINTER TO LOWER LEVEL
ENDLEV —--END OF LEVEL REACHED
TERM —-———-BOTTOM REACHED, TERMINAL NODE
OKAY ————-—-ANY OTHER CONDITION. *)
VAR NEWONE: INTEGER;
BEGIN
WITH POS(.LEVEL.) DO
BEGIN
CASE DIR OF
S UP :BEGIN
N IF (LEVEL<=1l) THEN STATUS :=ATTOP

B ELSE IF (NEXTONE=CURRENT) THEN STATUS:=ATTOP
ﬂ ELSE. BEGIN
LEVEL:= -1;
STATUS :=CKAY ;
o END;
END;

STATUS :=TERM
{" ELSE IF (MAP.NODE(.CURRENT.).CDPTR=0) THEN
¥ STATUS :=
ELSE IF (LEVEL>=MAP.DIRECT.NUMLEV) THEN
STATUS :=ATBOT
ELSE BEGIN
LEVEL :=LEVEL+];
POS({ .LEVEL.) . PARENT :=CURRENT;
NEWONE :=MAP . NODE (. CURRENT.) . CDPIR;
POS(.LEVEL.) . CURRENT : =NEWONE ;
POS(.LEVEL.) .NEXTONE:=
MAP.NODE(. NEWONE.) . SPPTR;
POS(.LEVEL.) . LASTONE : =CURRENT';
END;
END;
ACROSS : BEGIN
IF (NEXTONE<=0) THEN
STATUS :=ENDLEV
ELSE BEGIN
LASTONE : =CUURRENT ;
CURRENT H
NEXTONE : =sMAP . NODE (. CURRENT.) . SPPIR;
END;
END;
END;
END;
END; (* OF AMOVE *)

& DOWN : BEGIN
h o IF (MAP.NODE(.CURRENT.).CDPTR<0) THEN

*” oo

~r
RN

226

LIPS AP ST T =R Tl el W Al Al & - ' s o o a - . AP A

..........

PROCEDURE AMAPTRAV(VAR MAP:ADAMMAP;VAR POS:MAPPOS;

VAR LEVEL: INTEGER ;OPER :MAPOPER ; VAR RESULT:TRAVRES;
VAR PRFILE:PFILE);
(* TRAVERSES THE ADAM MAP ONE NODE AT A TIME IN
THE DIRECTIONS INDICATED BY OPER. KEEPS TRACK OF THE
FOSITION IN POS AND LEVEL, AND RETURNS THE RESULTING NODE
TYPE AS FOLLOWS:

TOP —- DONE, ERROR OR NOT

LEAF—- REACHED A LEAF

NEWNODE—- NEW NODE- QLD LEVEL, OR

NEW NODE~- NEW LEVEL

QLDNODE—- QLD NODE- QLD LEVEL ¥*)
(* THIS ROUTINE IS A STATE MACHINE.

STATE INPUT NEXT STATE RESULT

uwp ATTOP STOP TOP
OTHERS STOP NEANODE
DOWN EMPTY STOP Top
ATBOT STOP TP
TERM STOP LEAF
OTHERS STOP NEWNODE
mSS mDIEV upP —
OTHERS STOP NEWNODE
STOP _— el NEWN
*)
VAR (UROP:MAPOPER;
STATUS :MAPSTAT;
BEGIN
CUROP :=CPER;

WHILE (CUROP<>STOP) DO
BEGIN (* PERFORM ONE OPERATION PER LOOP. *)
CASE CUROP OF
DOWN : BEGIN
CUROP :=STOP;
M(m,m,m,m,mns);
IF (STATUS=FEMPTY) THEN
BEGIN
WRITELN(PRFILE,' *** MAP ERROR. MISSING ',
'SUBTREE., ***');
RESULT :=TOP;
END
ELSE IF (STATUS=ATBOT) THEN
BEGIN
WRITELN(PRFILE,' *** MAP ERROR. MISSING ',
'LEAF, ##*'),
RESULT :=TOP;
END
ELSE IF (STATUS=TERM) THEN
RESULT :=LEAF
ELSE (* NEW LEVEL. *)
RESULT : =NEWNODE ;
END;
ACROSS :BEGIN

227

~ T
B N T e T T S T N e N Ly Y T T W T T T v e T
et - O e S T O e L R T A e R

i
' AMOVE (MAP, POS, LEVEL, ACROSS, STATUS) ;

IF (STATUS=ENDLEV) THEN CUROP:=UP
ELSE BEGIN
CUROP :=STOP;

AMOVE (MAP, POS , LEVEL, UP, STATUS) ;
IF (STATUS=ATTOP) THEN RESULT:=TOP
ELSE RESULT:=0LDNODE;
END;
END;
END;
END; (* OF AMAPTRAV *)

BHGIN (* ADAMTEST *)

(*SNULLBODY*)
mD.

228

RN S R A R N T A S TR
.....
AP

PROGRAM ADAMUTIL;

RO (* THIS PROGRAM TESTS THE ADAM PROCEDURES *)
QONST
MAXNODES = 50; (* SMALL BUFFER FOR NOW. *)
MAXDIM = 10; (* MAX NUMBER OF DIMENSIONS. *)
MAXBIT = 16; (* INTHGER LENGTH IN BITS. *)
(* MAXBIT SHOULD ALWAYS BE BIGGER THAN MAXDIM. *)
MAXDI = 100; (* MAX DATA ITEMS IN A RETRIEVAL. *)
TYPE NODECELL = REOORD
SPPIR,CDPIR : INTBEGER ;
DATA:ARRAY (. 1..2 .) OF INTHGER;
BND;

NODEARRAY = ARRAY (. O..MAXNODES .) OF NODECELL;
MAPDIRECT = RECORD
NUMDIM, NUMREG , NUMNODES , NUMLEV : INTHGER ;
END;
ADAMMAP = RECORD
DIRECT :MAPDIRECT;
NODE : NODEARRAY ;
END;
PFILE = TEXT;
BITSET = ARRAY (. l..MAXBIT .) OF BOOLEAN;
BITARRAY = ARRAY (. 1..MAXBIT .) OF BITSET;
DIVEC = ARRAY (. 0..MAXBIT .) OF INTEGER;
e PUFLAG = (PACK,UNPACK);
' SCHRES = (NOTDONE, INSERi',MATCH);
REGDEF = REOCORD
LOWVAL, HIGHVAL : DIVEC;
END;
SEQDS = ARRAY (. 0..MAXDI .) OF DIVEC;
C8BARAY = ARRAY (. 1..8 .) OF CHAR;

VAR MAP:ADAMMAP;
MASK :ARRAY (. 1..MAXBIT .) OF INTBGER;
PRFILE:PFILE;
PRFLAG: (DISPLAY, PRINTER) ;
BITFLG, VECFLG : BOOLEAN ; (* DEBUG FLAGS. *)

(* I/0 ROUTINES. *)
PROCEDURE OUTBITS (OFILE:PFILE;BITS : BITSET; NUM: INTEGER) ;

EXTERNAL ;
(* THIS PROCEDURE OUTPUTS NUM BITS TO OFILE. ¥*)

PROCEDURE OUTVEC (DATVEC :DIVEC) ; EXTERNAL ;
(* OUTPUTS DATVEC TO PRFILE IN HEX AND INTEGER. *)

%
- 229

[
T

R R T T T O I L T L, - - L. . . RN
PP I R h - . A o R-
R T, T T R W AR AT A A S T R T S P S PO YU W s LA ET S

I EPUTIA L NR I v I LA .J

—— = ——— = DAt A S Sk S A e Al asut SRACM e st i I 50 S S A
b
L.
.“'

* -
;»g

Tos

"'

',

L (* FREE NODE MANIPULATION ROUTINES *)

(* RETURNS THE INDEX OF THE NEXT FREE NODE AFTER
REMOVING IT FROM THE FREE LIST.
NEW=0 ON RETURN
MEANS "OUT OF FREE STORAGE."

:! T PROCEDURE GETCELL (VAR NODE:NODEARRAY ; VAR NEW:INTHGER);

*)
BEGIN
NEW:=NODE(. 0 .).SPPIR; (* POINTER TO FIRST FREE CELL. *)
NODE(. O .).SPPTR:=NODE(. NEW .).SPPTR; (* NEXT CELL. *)
IF NEW=NODE(. 0 .).COPIR THEN
BEGIN (* BUFFER EMPTY. *)
NODE(. 0 .).CDPTR:=0;
WRITELN(' #*** MAP FULL, ***');
END;
END; (* OF GETCELL *)

230

...... . FA . . . - . . c. NN
SR PR e B e L e e e i B o N P G S S T G AT P S SSP G T TPy P S Sy SR |

..
......................

PROCEDURE NEWBUFF (VAR NODE:NODEARRAY ;M: INTEGER) ;
(* INITIALIZES A DATA BUFFER OF LENGTH M IN THE NODE
ARRAY INTO A FREE STORAGE LIST.
THIS SETS UP NODE(0O) AS THE HEAD OF THE LIST
OF FREE NODES.
NODE(0Q) . SPPTR——-FOINTER TO NEXT FREE NODE.
NODE(0) .CDPTR————POINTER TO LAST FREE NODE.
. NODE(0).DATA(1)——NUMBER OF NODES.
)
VAR I,J:INTEGER;

BEGIN

I:=0;

J:=l; (* J ALWAYS LEADS I BY ONE. *)

WHILE (I<=M) AND (I<=MAXNODES) DO

BEGIN (* LOOP THROUGH ALL NODES. *)

o WITH NODE(. I .) DO
2 BEGIN (* SET UP EACH NODE'S FIELDS. *)
- SPPIR:=J; (* POINTS TO NEXT NODE. *)
o CDPTR:=0; (* NULL CHILD POINTER. *)
Ei DATA(. 1 .):=0;(* EMPTY KEY FIELD. *)
3 DATA(. 2 .):=0;(* NO REGIONS. *)
END;
R 1:=J; (* ADVANCE TO NEXT NODE. *)
A J:=J+1;
R END;
s I:=I-1; (* RETURN TO LAST NODE. *)

NODE(. 0 .).CDPTR:=I; (* POINT TO LAST NODE. *)
NODE(. 0 .).DATA(. 1 .):=I; (* NUMBER OF NODES. *)
NODE(. I .).SPPIR:=0; (* LAST NODE IN FREE LIST. *)
END; (* OF NEWBUEFF *)

TT I T
S Y @

[g e A4
.

N .‘-’l ii.' P B
i KRR]

“ ‘-‘\‘. R

T

% TV
O

g

231

v)
SEGGT o
MRS P o
.

.............
......

LN U S WY S W PP UL Wl SR VAP NP S T NP

PROCEDURE RETCELL (VAR NODE:NODEARRAY ;OLD: INTEGER) ;
(* RETURNS AN OLD NODE TO THE FREE STORAGE LIST
AFTER CHECKING FOR DETECTABLE ERRORS. ¥)

BEGIN
IF (0<OLD) AND (OLD<=NODE(. O .).DATA(. 1 .)) THEN
BEGIN (* ASSUME OLD IS VALID. *)
WITH NODE(. OLD .) DO
BEGIN
SPPIR:=NODE(. 0 .).SPPIR; (* NEXT CELL *)
CDPIR:=0; (* ZERO REST OF NODE. *)
DATA(. 1 ,):=0;
DATA(. 2 .):=0;
END;
WITH NODE(. 0 .) DO
BEGIN

SPPTR:=0LD; (* INSERT AT HEAD OF LIST. *)
IF (CDPTR=0) THEN

CDPTR:=CLD; (* LAST CELL ON FREE LIST. *)

6 P AR

N RN S e e o
PR
~

232

.................

....................................
S T T T e T S TS
.................

(* BIT MANIPULATION UTILITIES. *)

PROCEDURE BITPU(VAR BITS:BITSET;VAR INTWD:INTEGER;DIR:PUFLAG);
(* KEYS ON DIR (PACK OR UNPACK) TO
PACK BITS INTO INTWD, OR
UNPACK INTWD INTO BITS. *)
VAR INDEX,REVIND,BITWD:INTEGER;

BEGIN
; IF (DIR=UNPACK) THEN
- BEGIN
BTTWD :=INTWD;
= BITS(.1.):=(BTTWD<0); (* SIGN BIT. *)
o IF (BITS(.l.)) THEN BITWD:=BITWD+MAXINT+1;
E (* USE JUST BITWDHMAXINT ON ONE'S OOMPLEMENT
- MACHINE. THIS IS FOR TWO'S OOMPLEMENT ONLY. *)
END
ELSE
BITWD:=0; (* BUILD WORD HERE. *)
INDEX:=2;
ﬁ WHILE (INDEX<=MAXBIT) DO
- BEGIN (* CHECK THE BITS ONE AT A TIME, *)
REVIND :=MAXBIT-INDEX+1;
IF (DIR=UNPACK) THEN
T BEGIN (* GET NEXT BIT SETTING. *)
- BITS(.INDEX.) :=(BITWD>=MASK (.REVIND.)) ;
, e IF (BITS(.INDEX.)) THEN (* UNPACK THE BIT. *)
i BITWD:=BITWD-MASK(.REVIND.) ;
o END
v'_‘ ELSE
& IF (BITS(.INDEX.)) THEN (* PACK ON THE BIT. *)
N BITWD :=BITWDHMASK(. REVIND.) ;
- INDEX :=INDEX+1;
o END;
- IF (DIR = PACK) THEN
BEGIN (* CHECK THE SIGN BIT. *)

IF (BITS(.l.)) THEN

RO
h "‘ '. .l. 'l

TV i-?‘\Tl'{
AAELANRAL S i
I k

: BITWD:=BITWD-MAXINT-1; (*TWO'S OOMPLEMENT MACHINE
INVERSE OF ABOVE TRANSFORMATION. *)
INTWD :=BITWD;
END;

END; (* OF BITPU *)

e

Y

vy
.

:‘ 233

TR DUC AT S ,.-J

.
..............
...............

. PROCEDURE CRTLSK (VAR LSKVEC :DIVEC; DATVEC :DIVEC;K: INTEGER) ;
SRR (* CREATE THE LEVEL SEARCH KEYS FROM THE DATA ITEM VECTOR,
= DATVEC. THE ITH LEVEL SEARCH KEY OONSISTS OF THE ITH MSB
OF EACH OF THE ELEMENTS OF DATVEC. THERE ARE K ELEMENTS
IN DATVEC, AND MAXBIT ELEMENTS IN LSKVEC. *)
VAR I,J,FLSEWD,REVIND:INTEGER;

TBIT:BOOLEAN;
TBVEC : BITSET;
LSKT: ;
BEGIN
FLSEWD:=0;
I:=l;
WHILE (I<=MAXBIT) DO
BEGIN (* ONE VECTOR ELEMENT INTO ONE ROW
IN THE BIT ARRAY. ¥*)
REVIND :=MAXBIT-I+1;
IF (BITFLG) THEN WRITE(PRFILE,I:3,' '):
IF (I<=K) THEN (* TRANSIATE A ROW. *)
BITPU(LSKT(.REVIND.) ,DATVEC(. I .),UNPACK)
ELSE (* SET ROW TO "0"S. *)
BITPU(LSKT(.REVIND.) ,FLSEWD, NPACK) ;
IF (BITFLG) THEN OUTBITS(PRFILE,LSKT(.REVIND.),MAXBIT);
I:=I+1;
END;
IF (BITFLG) THEN WRITELN(PRFILE);
s=];
Q WHILE (I<=MAXBIT) DO
BEGIN (* TRANSPOSE THE BIT ARRAY. *)
IF (BITFLG) THEN WRITE(PRFILE,I:3,' '):
1=I+1;

WHILE(J<=MAXBIT) DO
BEGIN (* SWITCH ELEMENTS IN THE REST OF THE
ROW AND COLUMN. *)
TBIT:=LSKT(. I,J .);
ISKT(. I,J .):=LSKT(. J,I .);
LSKT(. J,I .):=TBIT;
Je=J+l;
END;
IF (BITFLG) THEN OUTBITS(PRFILE,LSKT(.I.),MAXBIT);
BITPU(LSKT(. I .),LSKVEC(.I.),PACK);
I:=I+1;
END;
END; (* OF CRTLSK *)

234

----------- AP N e e PSP Y W SN R W

‘‘‘‘‘‘‘‘‘‘‘‘‘

(* MAP MANIPULATION UTILITIES. *)

PROCEDURE, NODEINS (VAR MAP :ADAMMAP ; NEWONE , PARENT , LASTONE,
NEXTONE : INTEGER) ;
(* INSERTS THE NODE AT NEWONE BETWEEN LASTONE AND NEXTONE,
QOMPENSATING IF EITHER IS A PARENT. *)

BEGIN
WITH MAP DO
BEGIN
IF (OKNEWONE) AND (NEWONE<=DIRECT.NUMNODES) THEN
BEGIN (* NEWONE APPEARS LEGAL. *)
IF (LASTONE=PARENT) THEN
BEGIN (* INSERT BELOW PARENT. *)
IF (NODE(. PARENT .).ODPIR=0) THEN
NEXTONE:=-PARENT; (* NEW LEVEL., *)
NODE(. NEWONE .).SPPTR:=NEXTONE;
NODE(. PARENT .).CDPTR: H
END
ELSE (* INSERT INTO LEVEL. *)
BEGIN
NODE(. LASTONE .).SPPTR:=NEWONE;
NODE(. NEWONE .).SPPTR:=NEXTONE;
END;
END;
END; (* IGNORE BAD POINTERS. *)

END; (* OF NODEINS *)

K -SSR '
et ‘ e g
2o Lo PR

a’ 235

b
e g e, P S T N R - . APPSR SR PRSP S P ULl Y T S SR SRP0L S

PROCEDURE MAPSRCH (VAR LSEARCH :SCHRES ; VAR PARENT, LASTONE,
NEXTONE, LEVEL : INTEGER ; VAR MAP : ADAMMAP ;
VAR LSK:DIVEC);
(* SEARCHES THE MAP IN MAP FOR THE LEVEL SEARCH
KEYS IN LSK. LSEARCH RETURNS INSERT OR MATCH, AND THE
POSITION IS RETURNED IN LEVEL, PARENT, LASTONE, AND

NEXTONE. *)
VAR L:INTEGER;
BEGIN
NEXTONE :=1; (* START AT ROOT. *)
LEVEL:=1;
3 PARENT':=1;
; IASTONE:=1;
3 WITH MAP DO
m BEGIN
. L:=DIRECT.NUMLEV;
LSEARCH :=MATCH;
WHILE (LSEARCH<>INSERT) AND (LEVEL<L) DO
BEGIN (* START A NEW LEVEL. *)
PARENT : =NEXTONE ;
LASTONE: H
NEXTONE :=NODE(. LASTONE .).CDPTR; (* MOVE DOWN. *)
LEVEL :=LEVEL+] ;
LSEARCH :=NOTDONE ;
WHILE (LSEARCH=NOTDONE) DO
BEGIN (* CHECK NEXT NODE ON LEVEL. *)
IF (NEXTONE<=0) THEN
LSEARCH:=INSERT (* END OF LEVEL, INSERT. *)
ELSE
BEGIN (* NOT END, CHECK NODE., *)

IF (LSK(.LEVEL.) >
NODE(.NEXTONE.) .DATA(. 1 .)) THEN
BEGIN (* MOVE ACROSS LEVEL. *)
LASTONE : =NEXTONE ;
NEXTONE : =NODE(. NEXTONE.) . SPPTR;
END
ELSE IF (LSK(.LEVEL.) =
NODE(. NEXTONE.) .DATA(. 1 .)) THEN
LSEARCH:=MATCH (* GO TO NEXT
LEVEL. *)
ELSE LSEARCH:=INSERT; (* INSERT HERE. *)
END;

’

; (* OF MAPSRCH *)

BEGIN (* ADAMTEST *)
(*$NULLBODY*)
END.

236

ML Vel S z s) P N SR L PR T WS S 3 PN URE VRPN N Qe Oy N R NI S R

a

-
»]
b ,
b e o
b <
9 M w0 :
. Z]
’ H .
g 5 2
2 a K ~
A A B
..‘» A
, s L
) B 'A
3 '
. N y
: :
| ;
.. ~.ﬁ\
y, “
. B i -i-
-.M. ,-..
'- ‘n -
P ﬂ. + '
W-._ K .-
N . .)
.-p . ' .~-‘
c.w. o ..,... ;-J

’
".r : .
RS . 3 . - - - - e e e n el - - N 4 . . - -
PR R " % . s e e R SV 4 e - s - -
s "y "0 %y -jv 5 L n.h.b.-hb-'» yay) (R

.....................

Test Run List

HELP list of ADAMCONTROL operations . . . « « « « « o 239
NEW - - test ACREATE. . . « « o« o o o o o o o o o« o o« 240
ADD — — test AADD . . &« o o o o o o o o o o o o o o o« 242
GET - - test ARETRIEVE. . .« + « o + 2 o o s « o « o o 247
FIND = = test AFIND . . o & ¢ o o o ¢ s o o o o o o« o« 249

DEL - teSt ADELETE e e e e e & e A& e o * o o o e o 253

238

LDOS READY

.......................
...

ADAM

INPUT =

OUTPUT =

PRFILE = :L

ADAM TEST ROUTINE.

ADD - - = = - - ADD DATA TO THE MAP.

DEB - - -~ = - - DEBUG THE STRUCTURE.

DEL = = - - - - DELETE ALL DATA POINTS WITHIN A
REGION.

FIND = = = = = =~ FLAG THE NEEDED NODES TO DEFINE
A REGION

GET - - -~ - - RETRIEVE A REGION OF DATA POINTS
INTO A SEQUENTIAL DATA FORM.

HELP = - = - - - PRINT OUT HELP TABLE.

NEW - - - = - =~ CREATE A NEW MAP BUFFER.

STOP = - - = - - STOP PROCESSING.

239

......

..........................

P P A T T T e e T

ADAM COMMAND= NEW
INPUT BUF SIZE >50
INPUT NUM DIM >3
INPUT NUM LEV >6
ADAM COMMAND= DEB
DEBUG COMMAND = HELP

BITS - - - -~ SWITCHES BIT OUTPUT FLAG.

DIR - - - - OUTPUT MAP DIRECTORY.

DISP - - - - SWITCHES OUTPUT TO DISPLAY.
DUMP - - - - PRINTS THE MAP.

HELP - - - - DISPLAYS THIS TABLE.

LIST - - - - SWITCHES OUTPUT TO PRINTER.
PAGE - - - - OUTPUTS A PAGE ON PRINT FILE.
STOP ~ - - - EXIT DEBUG MODE.

VECS - - - - SWITCHES VECTOR OUTPUT FLAG.

DEBUG COMMAND = LIST
DEBUG COMMAND = DIR
MAP DIRECTORY.
SIZE = 50 NODES.
0 REGIONS
3 DIMENSIONS
6 LEVELS
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.
INDEX OF STARTING NODE = 0
INDEX OF LAST NODE = 50
DUMP OF ADAM MAP.

FROM 0 TO 50
0 S/P= 2 C/D= 50 DATA= 0032 0000
1 S/pP= -1 c/p= 0 DATA= 0030 0000
2 S/P= 3 ¢/D= 0 DpaTa= 0000 0000
3 S/P= 4 C/D= 0 DATA= 0000 0000
4 S/P= 5 C/D= 0 DATA= 0000 0000
5 S/P= 6 C/D= 0 DATA= 0000 0000
6 S/P= 7 C/D= 0 DATA= 0000 0000
7 S/P= 8 C/D= 0 DATA= 0000 0000
8 S/P= 9 C/D= 0 DATA= 0000 0000
9 S/P= 10 C/D= 0 DATA= 0000 0000
S/P= 11 C/D= 0 DpaTA= 0000 0000
S/P= 12 c/p= 0 DpAaTA= 0000 0000
S/P= 13 C/D= 0 DATA= 0000 0000
S/P= 14 c/D= 0 DATA= 0000 0000
S/P= 15 c¢/p= 0 DATA= 0000 0000
S/P= 16 c/D= 0 DATA= 0000 0000
S/P= 17 c/D= 0 DATA= 0000 0000
S/p= 18 Cc/p= 0 DATA= 0000 0000
S/Pp= 19 ¢C/D= 0 DATA= 0000 0000
S/P= 20 C/D= 0 DATA= 0000 0000
S/p= 21 C/D= 0 DATA= 0000 0000
S/P= 22 C/D= 0 DATA= 0000 0000
S/p= 23 C/D= 0 DATA= 0000 0000
S/P= 24 C/D= 0 DATA= 0000 00620
S/P= 25 C/D= 0 DaTA= 0000 0000
S/P= 26 C/D= 0 DATA= 0000 0000

240

................

26 S/p= 27 C/D= 0 DATA= 0000 0000
27 S/p= 28 C/Dp= ¢ DaTa= 0000 0000
28 S/p= 29 C/D= 0 DATA= 0000 0000
29 S/P= 30 C¢/D= 0 DATA= 0000 0000
30 S/p= 31 ¢/p= 0 DATA= 0000 0000
31 S/P= 32 C¢/D= 0 DATA= 0000 0000
32 S/P= 33 ¢/Dp= 0 DATA= 0000 0000
33 S/P= 34 C/D= 0 DATA= 0000 0000
34 S/p= 35 ¢/D= 0 DATA= 0000 0000
35 S/P= 36 C/D= 0 DATA= 0000 0000
36 S/P= 37 c¢/p= 0 DATA= 0000 0000
37 S/P= 38 c¢/p= 0 DATA= 0000 0000
38 S/pP= 39 ¢/p= 0 DATA= 0000 0000
39 S/p= 40 c/p= 0 DATA= 0000 0000
40 S/p= 41 c/D= 0 DATA= 0000 0000
41 S/P= 42 ¢C/D= 0 DATA= 0000 0000
42 S/P= 43 C/D= 0 DATA= 0000 0000
43 S/P= 44 C/D= 0 DATA= 0000 0000
44 S/p= 45 C/D= 0 DATA= 0000 0000
45 S/P= 46 C/D= 0 DATA= 0000 0000
46 S/P= 47 c/D= 0 DATA= 0000 0000
47 S/p= 48 C/D= 0 bpaTa= 0000 0000
48 S/P= 49 C/D= 0 DATA= 0000 0000
49 sS/p= 50 C/D= 0 DATA= 0000 0000
50 S/p= 0 C/D= 0 DATA= 0000 0000

DEBUG COMMAND = STQP

STOPPING

END OF DEBUG.

Y "

et k4 AL v
o » B B
MR VR R
] LIV L I L I B

241

- > P ——— e ~—
CafRRiais I/ L AU Y DA At pus et i N = ™ T L4 i iy

—————— e F e~ ‘]

ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR. §
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE
0<= X(I) <1

X(1)
X(2)
X(3)
INPUT PT

.35
.45
.45
INDEX >1

ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE
0<= X(I) <1
X(1) = .55
X(2) = .35
X(3) = .45
INPUT PT INDEX >2
ADAM COMMAND= DEB
DEBUG COMMAND = PAGE
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.
INDEX OF STARTING NODE = 0
INDEX OF LAST NODE = 50
DUMP OF ADAM MAP.

FROM 0 TO 50
0 S/p= 12 c/p= 50 DATA= 0032 0000
1 S/P= -1 ¢c/D= 2 DATA= 0000 0000
{ 2 S/p= 7 c/p= 3 DATA= 0000 0000
g 3 S/P= -2 C/D= 4 DATA= 0007 0000
'. 4 S/p= -3 ¢/D= 5 DATA= 0006 0000
R 5 S/p= -4 C/D= 6 DATA= 0007 0000
- 6 S/p= -5 ¢/D= -1 DATA= 0001 0000
- 7 S/P= -1 c¢/p= 8 DATA= 0001 0000
- 8 S/pP= -7 c/p= 9 DATA= 0006 0000
;'.-_,- 9 S/P= -8 ¢/D= 10 paTa= 0004 0000
g 10 S/p= -9 c/D= 11 DATA= 0006 0000
3 11 sS/p= -10 ¢c/p= -2 DATA= 0003 0000
o 12 S/p= 13 ¢/D= 0 DATA= 0000 0000
- 13 S/p= 14 ¢c/D= 0 DATA= 0000 0000
o 14 s/p= 15 ¢c/D= 0 DATA= 0000 0000
b 15 S/p= 16 ¢C/p= 0 DATA= 0000 0000
7] 16 S/p= 17 ¢/p= 0 DATA= 0000 0000
a 17 S/p= 18 c/D= 0 DATA= 0000 0000
- 18 S/p= 19 c/p= 0 DATA= 0000 0000
¥ 19 S/p= 20 c/Dp= 0 DATA= 0000 0000
- 20 S/p= 21 c/D= 0 DATA= 0000 0000
» 21 sS/p= 22 /D= 0 DATA= 0000 0000 f
& 22 S/p= 23 /D= 0 DATA= 0000 0000
R 23 S/p= 24 C/D= 0 DATA= 0000 0000 |
v 24 S/p= 25 ¢C/D= 0 DATA= 0000 0000 :
& 25 S/p= 26 C/D= 0 DATA= 0000 0000
b :
E! 242 |
X |
| S 2 R R N . . o

(R

S/P= 27 c¢c/p= 0 DATA= 0000 0000
S/P= 28 C/D= 0 DATA= 0000 0000
S/p= 29 ¢C/D= 0 DATA= 0000 0000
S/p= 30 c¢/p= 0 DATA= 0000 0000
S/P= 31 c¢/p= 0 DATA= 0000 0000
S/p= 32 ¢/p= 0 DATA= 0000 0000
S/p= 33 c¢/p= 0 DATA= 0000 0000
S/p= 34 c/D= 0 DATA= 0000 0000
S/p= 35 C/D= 0 DaTA= 0000 0000
S/p= 36 C/D= 0 DATA= 0000 0000
S/P= 37 c¢/D= 0 DATA= 0000 0000
S/p= 38 ¢c/D= 0 DATA= 0000 0000
S/P= 39 ¢/D= 0 DATA= 0000 0000
S/p= 40 cC/D= 0 DATA= 0000 0000
S/P= 41 cC/p= 0 DaTa= 0000 0000
S/p= 42 cC/D= 0 DaTA= 0000 0000
S/p= 43 C/Dp= 0 DATA= 0000 0000
S/p= 44 C/D= 0 DATA= 0000 0000
S/pP= 45 C/D= 0 DaTa= 0000 0000
S/p= 46 C/D= 0 DATA= 0000 0000
S/p= 47 C/D= 0 DATA= 0000 0000
S/p= 48 C/D= 0 DATA= 0000 0000
S/P= 49 C/D= 0 DATA= 0000 0000
S/pP= 50 C/D= 0 DATA= 0000 0000
S/P= 0 c/bp= 0 DATA= 0000 0000
DEBUG COMMAND = STOP
STOPPING
END OF DEBUG.
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ey ALL INPUTS SHOULD BE
DX 0<= X(I) <1
" X(1l) = .45
-5 X(2) = .35
;; X(3) = .35
F! INPUT PT INDEX >3
' ADAM COMMAND= ADD
o VECTOR INPUT FOR DATA PT
s INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE
0<= X(I) <1
X(1) = .55
X(2) = .45
X(3) = .35
INPUT PT INDEX >4
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE
243
PR e e e e e e PRI |

............................

0<= X(I) <1
X(1) = .45
X(2) = .25
X(3) = .25
INPUT PT INDEX >5
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE

0<= X(I) <1
X(1) = .35
X(2) = .55
X(3) = .15

INPUT PT INDEX >6
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE

0<= X(I) <1
X(1) =0
X(2)=0
X(3) =0

INPUT PT INDEX >7
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE
0<= X(I) <1
X(1l) =.1
X(2) =.1
X(3) =.1
INPUT PT INDEX >8
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE

0<= X(I) <1
X(1) = .9
X(2) = .9
- X(3) =.9
1] INPUT PT INDEX >9
= ADAM COMMAND= ADD

VECTOR INPUT FOR DATA PT
oF INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
» USE A VALUE <0 TO ABORT INPUT SEQUENCE.
< ALL INPUTS SHOULD BE
0<= X(I) <1

oo X(1) =0
A X(2) = .5
. X(3) = .9

244

INPUT PT INDEX >10
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE

0<= X(I) <1
X(1l) =.9
X(2) =0
X(3) = .5

INPUT PT INDEX >1l1
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE

0<= X(I) <1
X(1l) =.5
X(2) = .5
X(3) = .5

INPUT PT INDEX >12
ADAM COMMAND= ADD
VECTOR INPUT FOR DATA PT
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE
0<= X(I) <1
X(1) =.75
X(2) = .25
X(3) = .5
INPUT PT INDEX >13
%%* MAP FULL., ***
*** MAP FULL, ***
ADAM COMMAND= DEB
DEBUG COMMAND = PAGE
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.
INDEX OF STARTING NODE = 0
INDEX OF LAST NODE = 50
DUMP OF ADAM MAP.

FROM 0 TO 50
0 S/pP= 50 cC/D= 50 DATA=
1 S/P= -1 c/D= 2 DATA=
2 S/P= 7 c/D= 25 DATA=
3 S/pP= -2 ¢/D= 12 DATA=
4 S/p= -3 C/D= 5 DATA=
5 S/p= -4 C/D= 6 DATA=
6 S/P= -5 C/D= -1 DATA=
7 S/p= 20 C/D= 8 DATA=
8 S/P= -7 C/D= 15 DATA=
9 S/P= -8 C/D= 10 DATA=
10 S/P= -9 ¢C/D= 11 DATA=
11 S/p= -10 c/D= -2 DATA=
12 S/P= 4 C/D= 18 DATA=

245

0032
0000
0000
0007
0006
0007
0001
0001
0006
0004
0006
0003
0001

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

13 S/P= =12 c¢C/p= 14 DATA= 0007 0000

14 S/P= -13 C/D= -3 DATA= 0006 0000
15 sS/P= 9 C/D= 16 DATA= 0002 0000
16 S/P= -15 C/D= 17 DATA= 0006 0000
17 S/P= -16 C/D= -4 DATA= 0005 0000
18 S/P= 13 c/p= 19 paTa= 0001 0000
19 S/P= -18 C/D= -5 DATA= 0000 0000
20 s/pP= 41 cC/p= 21 DATA= 0002 0000
21 S/P= -20 C/D= 22 DATA= 0001 0000
22 s/pP= -21 cC/D= 23 DATA= 0004 0000
23 S/P= -22 C/D= 24 DATA= 0001 0000
24 s/pP= -23 C/D= -6 DATA= 0003 0000
25 S/P= 3 C/Dp= 26 DATA= 0000 0000
26 S/p= -25 C/D= 27 DATA= 0000 0000
27 S/P= 29 C/D= 28 DATA= 0000 0000
28 S/P= -27 C/D= -7 DATA= 0000 0000
29 S/P= -26 C/D= 30 DATA= 0007 0000
30 S/P= -29 C/D= -8 DATA= 0007 0000
31 S/P= -1 ¢/D= 46 DATA= 0007 0000
32 S/P= -31 c/p= 33 DATA= 0007 0000
33 S/P= -32 C/D= 34 DATA= 0007 0000
34 S/P= -33 C/D= 35 DpaTa= 0000 0000
35 S/P= -34 C/D= -9 DATA= 0000 0000
36 S/P= 31 c¢/p= 37 DATA= 0006 0000
37 S/P= -36 C/D= 38 DATA= 0004 0000
38 S/P= -37 C/D= 39 DATA= 0004 0000
39 S/P= -38 C/D= 40 DATA= 0000 0000
40 S/pP= -39 C/D= -10 DATA= 0000 0000
41 S/P= 36 c/p= 42 DATA= 0005 0000
42 S/P= -41 c/p= 43 DATA= 0001 0000
43 S/P= -42 C/D= 44 DATA= 0001 0000
44 S/pP= -43 C/D= 45 DATA= 0000 0000
45 S/P= -44 C/D= -11 DATA= 0000 0000
46 S/P= 32 c/p= 47 DATA= 0000 0000
47 S/P= -46 C/D= 48 DATA= 0000 0000
48 S/P= -47 C/D= 49 DATA= 0000 0000
49 S/P= -48 C/D= -12 DATA= 0000 0000
50 S/P= 0 Cc/D= 0 DATA= 0000 0000

DEBUG COMMAND = STOP
STOPPING
END OF DEBUG.

246

- TN S

’ '-".‘-w".‘-."-"'»."-.".".." s N e T e N e e e T s . e T -
""" VR R W D L AR B G W PRV S N P R Y T T ST R PP R AP S P SN

A Sl e N I AL S - S s e TS o
A - - - - . - T R VP AP N - - * -t = h

o~ [e e g i TV T

o

ADAM COMMAND= GET
INPUT REG IND >0
RETRIEVED DATA POINTS.

.00000 .00000 .00000
.09375 .09375 .09375
.43750 .25000 .25000
.43750 .34375 .34375
.34375 .43750 .43750
.53125 .43750 .34375
.53125 .34375 .43750
.34375 .53125 .12500
.87500 . 00000 .50000
10 .00000 .50000 .87500
12 .50000 .50000 .50000

9 .87500 .87500 .87500

=
HaAMAHWOOY

A0
'f.“ AN

e 23

l' ?

Sl e

=0

T

oy e

247

o T et T T T L .« } R . AN S e e
. B e RPN AP AR T S TP W PR P PP G-I i Gh P URSE Tl ShC YR ST, TS SIS S R SR “‘,,,___.1

ADAM COMMAND= FIND
INPUT REG IND >1
VECTOR INPUT FOR REG MIN
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE

0<= X(I) <1
X(1) =.3
X(2)=.2
X(3) =.1

VECTOR INPUT FOR REG MAX
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE

0<= X(I) <1
X(1l) =.,5
X(2) = .6
X(3) = .5

ADAM COMMAND= GET
INPUT REG IND >1
RETRIEVED DATA POINTS.

5 .43750 .25000 . 25000
3 .43750 . 34375 .34375
1 .34375 . 43750 .43750
6 « 34375 .53125 .12500
12 .50000 .50000 .50000

ADAM COMMAND= DEB
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.
INDEX OF STARTING NODE = 0
INDEX OF LAST NODE = 50
DUMP OF ADAM MAP.

FROM 0 TO 50
0 S/P= 50 C/D= 50 DATA= 0032 0000
1 S/P= -1 ¢c/D= 2 DATA= 0000 CO000
2 S/P= 7 C/b= 25 DATA= 0000 C000
3 S/P= -2 C/D= 12 paTa= 0007 CO000
4 S/P= -3 C/D= 5 DATA= 0006 CO000
5 S/P= -4 C/D= 6 DATA= 0007 8000
6 S/P= -5 ¢C/D= -1 DATA= 0001 0000
7 S/P= 20 ¢c/D= 8 DATA= 0001 CO000
8 S/P= -7 ¢C/D= 15 DATA= 0006 C000
9 S/P= -8 C/D= 10 paTa= 0004 CO000
10 S/P= -9 C/D= . 11 DpaTa= 0006 <C000
11 S/P= =10 ¢C/D= -2 DATA= 0003 4000
12 S/P= 4 C/D= 18 DATA= 0001 8000
13 S/P= =12 ¢C/D= 14 DATA= 0007 0000
14 S/P= -13 C/D= -3 DATA= 0006 0000
15 S/P= 9 C/D= 16 DATA= 0002 C000
16 S/P= -15 ¢C/D= 17 DATA= 0006 CO000
17 S/P= -16 C/D= -4 DATA= 0005 4000
18 S/P= 13 ¢/D= 19 DpaTa= 0001 0000

248

........

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

S/p=
S/P=
S/P=
S/P=
S/P=
S/P=
S/P=
S/p=
S/P=
S/P=
S/p=
S/P=
S/pP=
S/P=
S/P=
S/P=
S/P=
S/P=
S/P=
s/p=
S/p=
S/P=
S/P=
S/p=
S/pP=
S/p=
S/P=
S/P=
S/P=
S/P=
S/P=
S/p=

-18
41
<20
=21
-22
-23
3
-25
29
-27
-26
-29
-1
-31
-32
-33
-34
31
-36
=37
-38
-39
36
-41
-42
-43
-44
32
-46
-47
-48
0

DEBUG COMMAND = STOP

STOPPING

END OF DEBUG.
ADAM COMMAND= FIND
INPUT REG IND >2
VECTOR INPUT FOR REG MIN

C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=

C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=

DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
0 DATA=

.............

INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE
0<= X(I) <1
X(1) = .5
X(2) =.3
X(3) = .3
VECTOR INPUT FOR REG MAX
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.
ALL INPUTS SHOULD BE
0<= X(I) <1
X(1l) = .6
X(2) = .5
X(3) = .5

249

...........................

0000
0002
0001
0004
0001
0003
0000
0000
0000
0000
0007
0007
0007
0007
0007
0000
0000
0006
0004
0004
0000
0000
0005
0001
0001
0000
0000
0000
0000
0000
0000
0000

0000
Cc000
Cc000
C000
8000
0000
4000
0000
0000
0000
0000
0000
C000
4000
0000
0000
0000
C000
4000
0000
0000
0000
Cco000
4000
0000
0000
0000
Cc000
Cc000
C000
Cco000
0000

a7

-
X .

A
o
i
4
Y
?
T
.

l‘\

.............

S

ADAM COMMAND= GET
INPUT REG IND >2
RETRIEVED DATA POINTS.

4 .53125 .43750
2 .53125 .34375
12 .50000 .50000

ADAM COMMAND= FIND
INPUT REG IND >3
VECTOR INPUT FOR REG MIN
INPUT THE 3 DIMENSIONAL DATA
USE A VALUE <0 TO ABORT INPUT
ALL INPUTS SHOULD BE

0<= X(I) <1
X(1l) = .3
X(2) =.2
X(3) =.1

VECTOR INPUT FOR REG MAX
INPUT THE 3 DIMENSIONAL DATA
USE A VALUE <0 TO ABORT INPUT
ALL INPUTS SHOULD BE
0<= X(I) <1
X(1l) =.5
X(2) = .6
X(3) =.5
ADAM COMMAND= GET
INPUT REG IND >3
RETRIEVED DATA POINTS.

5 . 43750 . 25000
3 .43750 «34375
1 .34375 .43750
6 .34375 .53125
12 .50000 .50000

ADAM COMMAND= FIND
INPUT REG IND >3
VECTOR INPUT FOR REG MIN
INPUT THE 3 DIMENSIONAL DATA
USE A VALUE <0 TO ABORT INPUT
ALL INPUTS SHOULD BE
0<= X(I) <1
X(1) = .4
X(2) = .3
X(3) = .3
VECTOR INPUT FOR REG MAX
INPUT THE 3 DIMENSIONAL DATA
USE A VALUE <0 TO ABORT INPUT
ALL INPUTS SHOULD BE
0<= X(I) <1
X(1l) = .6
X(2) = .5
X(3) = .5
ADAM COMMAND= GET
INPUT REG IND >3

250

................

. 34375
.43750
.50000

ITEM VECTOR.
SEQUENCE.

ITEM VECTOR.
SEQUENCE.

.25000
.34375
.43750
.12500
.50000

ITEM VECTOR.
SEQUENCE.

ITEM VECTOR.
SEQUENCE.

T

Ndin §

e

RETRIEVED DATA POINTS.

3 .43750 .34375 .34375
1 .34375 .43750 .43750
4 .53125 .43750 .34375
2 .53125 .34375 .43750
6 .34375 .53125 .12500
12 .50000 .50000 .50000

ADAM COMMAND= DEB
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.
INDEX OF STARTING NODE = 0
INDEX OF LAST NODE = 50
DUMP OF ADAM MAP.

FROM 0 TO 50
0 S/P= 50 C/D= 50 DATA= 0032 0000
1 S/P= -1l c¢C/D= 2 DATA= 0000 Fco00
2 S/P= 7 C/D= 25 DATA= 0000 DCOO
3 S/P= -2 C/D= 12 paTa= 0007 cCcoO00
4 s/p= -3 ¢/D= 5 DATA= 0006 CCO00
5 S/P= -4 C/D= 6 DATA= 0007 8800
6 S/P= -5 C/D= -1 DATA= 0001 0000
7 S/P= 20 C/p= 8 DATA= 0001 FCOO
8 S/P= -7 C/D= 15 DATA= 0006 FCO00
9 S/P= -8 C/D= 10 DpATA= 0004 FCOO
10 S/P= -9 ¢c/p= 11 DATA= 0006 ES800
11 S/P= -10 cC/D= -2 DATA= 0003 4400
12 S/P= 4 C/D= 18 DATA= 0001 8C00
13 S/P= ~-12 c/D= 14 DATA= 0007 0800
14 S/P= ~-13 /D= -3 DATA= 0006 0000
15 S/P= 9 c/D= 16 DATA= 0002 FCO0
16 S/P= -15 ¢Cc/D= 17 DATA= 0006 ES800
17 S/P= ~-16 C/D= -4 DATA= 0005 4400
18 S/P= 13 c¢/p= 19 DpaTa= 0001 0C00
19 S/P= ~-18 C/D= -5 DATA= 0000 0400
20 S/P= 41 C/D= 21 DATAa= 0002 DCOO
21 S/P= -20 ¢/D= 22 DATA= 0001 Cco00
22 S/P= -21 ¢C/D= 23 DATA= 0004 cCCO0
23 S/P= ~22 C/D= 24 DATA= 0001 8800
24 S/P= ~23 c/D= -6 DATA= 0003 0000
25 S/P= 3 ¢c/b= 26 DATA= 0000 4400
26 sS/P= ~25 cC/D= 27 DATA= 0000 0000
27 S/pP= 29 c/p= 28 DATA= 0000 0000
28 S/P= ~27 c¢/D= -7 DATA= 0000 0000
29 S/P= ~26 C/D= 30 DATA= 0007 0000
30 S/p= ~29 C/D= -8 DATA= 0007 0000
31 S/p= -1 c/D= 46 DATA= 0007 FCO00
32 S/P= =31 cC/pD= 33 DATA= 0007 5400
33 S/P= ~-32 C/D= 34 DATA= 0007 0000
34 S/P= ~33 c/D= 35 DATA= 0000 0000
35 S/P= ~34 C/D= -9 DATA= (0000 0000
36 S/P= 31 c/D= 37 DATAa= 0006 DCO0O
37 S/P= ~-36 C/D= 38 DATA= 0004 4400
38 S/P= ~-37 C/D= 39 DATA= 0004 0000

251

e DIV I R T L R S A SR PO wTe . . - . t . -
. MU AN N T e e e T e BRI . e A v e
G Y A A RO T A T T A e A 2 — ; e

- - e B e ettt el aiibin aiit At e dnstii s a il A i .
............. R Y P e d i i R SR ST e e B - AN - . .
... -

39 S/pP= -38 C/D= 40 DpATA= 0000 0000
40 S/P= -39 ¢c/D= -10 DATA= 0000 0000
41 S/P= 36 c/D= 42 DpATA= 0005 FCO0
42 S/P= -41 C/D= 43 DATA= 0001 5400
43 S/P= -42 ¢C/D= 44 DATA= 0001 0000
44 S/P= -43 C/D= 45 DATA= 0000 0000
45 S/P= -44 C/D= -11 DATA= 0000 0000
46 S/P= 32 c¢c/p= 47 DpaATAa= 0000 FCOO
47 S/P= -46 C/D= 48 DATA= 0000 FCO00
48 S/P= -47 C/D= 49 DATA= 0000 FCO00
49 S/P= -48 C/D= -12 DATA= 0000 FCOO
50 S/P= 0 c/p= 0 DATA= 0000 0000

DEBUG COMMAND = STOP

STOPPING

STOPPING

END OF DEBUG.

(n

HHNE NN @ N

252

.............
.................

S e -
......

|
I3
’.
’

- v ey
s e
PR}
.
Vo
H

WX XA
o
Gl ey
4
4

ADAM COMMAND= DELETE
ADAM COMMAND= DEL
INPUT REG IND >2
ADAM COMMAND= FIND
INPUT REG IND >3

0<= X(I) <1
X(1) = -1
ADAM COMMAND= GET
INPUT REG IND >3
RETRIEVED DATA POINTS.

DO A S) O - vy Ty
DERRNE MARAASS

3 .46677
1 «37302
6 .37302

ADAM COMMAND= GET 0
INPUT REG IND >0
RETRIEVED DATA POINTS.

7 .02927
8 .12302

5 . 46677

3 .46677

1 .37302

Q 6 .37302
11 .90427

10 .02927

9 .90427

ADAM COMMAND= DEB
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.

VECTOR INPUT FOR REG MIN
INPUT THE 3 DIMENSIONAL DATA ITEM VECTOR.
USE A VALUE <0 TO ABORT INPUT SEQUENCE.

ALL INPUTS SHOULD BE

.37302
.46677
.56052

. 02927
.12302
.27927
.37302
.46677
.56052
.02927
.52927
.90427

INDEX OF STARTING NODE = 0

INDEX OF LAST NODE =
DUMP OF ADAM MAP.

FROM 0 T0

0 S/p= 46

1l S/P= -1

2 S/p= 20

3 S/p= -2

4 S/p= -3

5 S/p= -4

6 S/p= -5

7 S/p= 8

8 S/p= 9

1; 9 S/p= 10
% 10 S/p= 11
% 11 S/P= 15
12 S/p= 4

- 13 s/p= -12
DR 14 S/p= =13

¥ 15 S/p= 16

50

50

C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=
C/D=

253

.35934
.45309
.14059

.01559
.10934
.26559
.35934
.45309
.14059
.51559
.89059
.89059

DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=

0000
FC00

CCo0
CCo00
8800
0000
0000
0000
0000
0000
0000
8C00
0800
0000
0000

o 8ks ot
e aty Sy

SN2

16 S/p= 17 c¢/p=

17 S/P= 50 ¢/b=
18 S/P= 13 c¢/D=
19 S/P= -18 cC/D=
20 S/P= 41 /D=
21 S/p= -20 c/D=
22 S/P= -21 C/D=
23 S/P= -22 C/D=
24 S/P= -23 C/D=
25 S/p= 3 ¢/b=
26 S/P= -25 C/D=
27 S/P= 29 c/p=
28 S/P= -27 C/D=
29 S/P= -26 C/D=
30 S/P= -29 C/D=
31 S/P= -1 C/D=
32 S/P= -31 c¢/D=
33 S/P= -32 c/D=
34 S/P= -33 Cc/D=
35 S/P= -34 C/D=
36 S/P= 31 c¢/p=
37 S/P= -36 C/D=
38 S/P= -37 c¢c/p=
39 S/P= -38 C/D=
40 S/P= -39 c/D=
41 S/P= 36 C/p=
42 S/P= -41 C/D=
43 S/P= -42 cC/D=
44 S/pP= -43 cC/D=
45 S/P= -44 C/D=
46 S/p= 47 c/p=
47 S/P= 48 C/D=
48 S/P= 49 cC/D=
49 S/P= 7 C/D=
50 S/P= 0 C/Dp=

DEBUG COMMAND = STOP
STOPPING

END OF DEBUG.
ADAM COMMAND= DEL

INPUT REG IND >3
ADAM COMMAND= GET
INPUT REG IND >1
RETRIEVED DATA POINTS.
5 . 46091 « 27927

ADAM COMMAND= GET
INPUT REG IND >2
NO DATA POINTS IN THE REGION.
ADAM COMMAND= GET
INPUT REG IND >3
NO DATA POINTS IN THE REGION.
ADAM COMMAND= GET
INPUT REG IND >0

254

.....

DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=

.26559

0000
0000
0001
0000
0002
0001
0004
0001
0003
0000
0000
0000
0000
0007
0007
0007
0007
0007
0000
0000
0006
0004
0004
0000
0000
0005
0001
0001
0000
0000
0000
0000
0000
0000
0000

0000
0000
0Co00
0400
DCO00
Cccoo
CC00
8800
0000
4400
0000
0000
0000
0000
0000
FCO00
5400
0000
0000
0000
DC00
4400
0000
0000
0000
FC00
5400
6900
0000
0000
0000
0000
0000
0000
0000

s Ty
-~ . - D A
o P et R . L S L Sl .

. . T N - L e R T TP

RETRIEVED DATA POINTS.

7 .02341 . 02927 .01559
8 «11716 .12302 .10934
5 . 46091 . 27927 .26559
11 .89841 .02927 .51559
10 .02341 .52927 .89059
9 .89841 . 90427 .89059

ADAM COMMAND= DEB
DEBUG COMMAND = DUMP
DUMP NODE CONTENTS.
INDEX OF STARTING NODE = 0
INDEX OF LAST NODE = 50
DUMP OF ADAM MAP.

FROM 0 TO 50
0 S/P= 20 C/D= 50 DATA= 0032 0000
1 S/pP= -1 ¢/D= 2 DATA= 0000 FCO00
2 S/P= 41 c/p= 25 DATA= 0000 DCOO
3 S/p= -2 C/D= 12 paTa= 0007 CCO0
4 S/pP= 5 C/D= 0 DATA= 0000 0000
5 S/P= 6 C/D= 0 DATA= 0000 0000
6 S/P= 13 c/D= 0 DATA= 0000 0000
7 S/p= 8 c/p= 0 DATA= 0000 0000
8 S/P= 9 /D= 0 DATA= 0000 0000
9 S/p= 10 c¢/D= 0 DATA= 0000 0000
10 S/P= 11 c¢/p= 0 DATA= 0000 0000
11 S/p= 15 C/D= 0 DATA= 0000 0000
12 S/p= -3 ¢/Dp= 18 DATA= 0001 8C00
13 S/P= 14 c/D= 0 DATA= 0000 0000
14 S/pP= 46 C/D= 0 DATA= 0000 0000
15 S/P= 16 c/D= 0 DATA= 0000 0000
16 S/P= 17 c/b= 0 DATA= 0000 0000
17 S/p= 50 C/D= 0 DATA= 0000 0000
18 S/p= -12 ¢/p= 19 DATA= 0001 0CO00
19 S/p= -18 cC/D= -5 DATA= 0000 0400
20 S/P= 21 /D= 0 DATA= 0000 0000
21 S/p= 22 C/D= 0 DATA= 0000 0000
22 S/P= 23 C/D= 0 DATA= 0000 0000
23 S/p= 24 C/D= 0 DATA= 0000 0000
24 S/p= 4 C/D= 0 DATA= 0000 0000
25 S/P= 3 ¢/p= 26 DATA= 0000 4400
26 S/P= -25 /D= 27 DATA= 0000 0000
27 S/p= 29 ¢c/p= 28 DATA= 0000 0000
28 S/p= -27 /D= ~7 DATA= 0000 0000
29 S/p= -26 C/D= 30 DATA= 0007 0000
30 S/p= -29 /D= -8 DATA= 0007 0000
31 S/p= -1 C/D= 32 DATA= 0007 FCO0
32 S/Pp= -31 c/p= 33 DATA= 0007 5400
33 S/p= -32 /D= 34 DATA= 0007 0000
34 S/p= -33 c¢c/D= 35 DATA= 0000 0000
35 S/p= -34 C/D= ~9 DATA= 0000 0000
36 S/p= 31 ¢/D= 37 DATA= 0006 DCOO
37 S/p= =36 C/D= 38 DATA= 0004 4400
38 S/P= -37 C/D= 39 DATA= (0004 0000

255

<

5

il

RN

I

DA
v, 8

39 S/p=
40 S/vr=
41 S/P=
42 S/p=
43 S/p=
44 sS/p=
45 S/p=
46 s/P=
47 S/P=
48 S/p=
49 S/P=
50 s/p=

Aoditel Suniih Jabaieh St it dEnA S et I 4

DEBUG COMMAND = STOP

STOPPING
END OF DEBUG.

ADAM COMMAND= STOP

STUP REQUESTED.

END OF ADAM TEST.

Cc/D=
C/D=
c/D=
Cc/D=
C/D=
C/D=
Cc/D=
Cc/D=
C/D=
c/D=
c/D=
C/D=

PROGRAM TERMINATED AT #8333
STACK USED = 4653 OF 8128 HEAP USED
LDOS READY
RESET *DO

DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=
DATA=

0000
0000
0005
0001
0001
0000
0000
0000
0000
0000
0000
0000

0000
0000
FCO00
5400
0000
0000
0000
0000
0000
0000
0000
0000

= 882 OF 12302

PRER

Vita

James R. Holten III was born cn 18 April, 1949 in Paso
Robles, California, to Mr. and Mrs. James R. Holten jr. He
graduated from Illinois Valley High School, Cave Junction,
Oregon, in 1967. 1In 1973 he graduated from Oregon State

University with a Bachelor of Science in Mathematics and a

Bachelor of Science in Computer Science. After graduation

he enlisted in the Air Force, and in 1975 was admitted into

- Officer Training School. After commissioning on 16 July,
Ei 1975, he spent six years as a Missle Warning Programming
ég Officer on phased array warning sites at Eglin Air Force

Base, Florida; Otis Air Force Base, Massachusetts; and Beale
‘E! Air Force Base, California. During this time he maintained
.f computer programs for communications, radar function
2 control, real time operating systems, and automated fault
b detection and isolation. He is married to the former

Raymona A. Clinkingbeard of Ft. Walton Beach, Florida, and

Ltedwd -
DRERDCEN

2y they have six children, Erin, Donald, James, Aghavni,

Arlene, and Roger.

" Permanent Address: 5839 Westside Rd.

Cave Junction, Oregon 97523

257

SECURITY CLASS'FICATION OF THIS PAGE (When Data Entered)

L S Sk st et bangh SaaticSmair™y - - Y il gl At MRl s SPIL b R e i SR i AREL AP S ACHE A SN i LR
0 . . . - L - .

e d

READ INSTRUCTIONS
- BEFORE COMPLETING FORM
2. GOVT ACCESSION NOJ 3. RECI®'ENT'S CATALOG NUMBER

REPORT DOCUMENTATION PAGE
[T. REPORT NUMDER

AFIT/GCS/EE/82D-19

ADAsAY cf?j

4. TITLE (and Subtitlo) S. TVFE OF REPCRT & PERIOD COVERED
ASSOCIATIVE DATA ACCESS METHOD MS Thesis
(ADAM) 6. PERFORMING ORG. REPORT NUMBER

S T ———
7. AUTHOR(a)

James R. Holten III

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Air Force Institute of Technology (AFIT-EN)
Wright-Patterson AFB, Ohio 45433

0. PPOGRAM ELEMENT, PROJECT, TASK
AREA A WORK UNIT NUMBER

[T MONITORING AGENCY NAME & ADDRESS(If different from Controlling Olfice)

12. REPORT DATE

December, 1982

13. NUMBER OF PAGES

11. CONTROLLING OFFICE NAME AND ADDRESS

15. SECURITY CLASS. (of this report)

Unclassified

15a, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES oved lor ”: o py—— mm
WOLAVER
lor Research and Professional Developmest
Force Institute of Technelcgy (AIC)
w:ight Patterson AFB OH 45453

19 JAN 179

19. KEY WORDS (Continue on reverse side if necessary and identity by dblock number)

Associative Data Access
Computer Data Structures
Data Base Access
Associative Memory

20. ADSTRACT (Continue on reverse side i1 necessary and identify by block number)

A software solution to the multikey access problem is presented
The result, ADAM, models associative memory techniques to obtain
fast retrieval times and efficient data storage. A multidimensionafl
tree structure is used. Each data item key is one d1mens1on,
and at each lower level in the tree each cimension is divided
into successively smaller half-intervals. Unlike m-way trees

with fixed sized nodes and Kh-D tree levels, each ADAM mag 1evel is
‘@ linear linked 1ist. Each node of the ADAM level linear

DD , o W73 Unclassified

EDITION OF t NOV 63 I3 OSSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

a

Py

e h.&“ ; .‘.

" Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) —

aafiase . M athtst it abmnine fiabe. inai Rantie i dbatii M SR AL S T sy s
~ AT e et arel ek Jees e st A oSl AU AR - : : : : - q
.............. . s A L .

the root of a subtree, or is the terminal node of a data item in
the data set. The resulting data structure is, in many cases,
more storage efficient than normal linear storage of the data itemsi
- This is due to the suppression of duplicate high order bits among -
] the data items. The method allows retrieval of associative data L,ﬁ
& subsets from the associative data set much faster than other multikpy W
access techniques. Analysis of variations on ADAM are suggested,
especially for application to very large (over 100000 data items !
per data set) multiuser databases.]
i——ﬁ

1
o 4

g T~ J
R 0 ASEOR RN

AJ
)
L2

aadua.

" d T
. PRI T
o St

——y
ris v

Um Unclassified

™y v*v-vls

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) i -
e - —
: i Ly) 2 o L A PRETRPN R L WG U Py W |

